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ABSTRACT 

 

A finite element analysis was used to examine the lateral soil deformation behavior of 

soft soils during the construction of levee improvements along the Sacramento River East Levee 

(SREL) in the Natomas Basin just north of Sacramento, CA. After Hurricane Katrina in 2005, it 

was found that Sacramento had the greatest risk of flooding due the ageing and inadequately 

maintained levee systems. An executive order was declared and agencies began to evaluate and 

mitigate levee conditions. Sacramento Area Flood Control Agency (SAFCA) evaluated the levee 

conditions and then designed and executed  levee improvements along a 10 mile stretch of the 

SREL from 2005-2011.  To meet United States Army Corps of Engineers Standards, a new 

adjacent levee was required. For underseepage control for much of this length, a soil-bentonite 

cutoff wall (SB wall) under the future adjacent levee crest was to be excavated near the toe of the 

existing 2H:1V embankment. Prior to construction, inclinometers were installed at the adjacent 

levee toe and between the existing levee and slurry trench.  Inclinometer data showed 

unexpected horizontal movements of up to 10 mm, away from the trench during the excavation 

under a bentonite-slurry mixture. After the soil-bentonite fill was placed, horizontal movements 

shifted towards the trench and greater than 25 mm of movement were observed to distances 

nearly two times the slurry trench depth from the cutoff wall alignment.   

A study was developed to evaluate the key parameters affecting lateral deformation of the 

soft Sacramento River soils.  The model was implemented in multiple steps to mimic the actual 

phased construction performed in the field. The steps included the initial working platform fill, 

excavation and subsequent filling of the trench with bentonite-slurry mixture, backfilling of the 

trench and final filling of the embankment. Soil and ground conditions in the model were 
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established from field and laboratory testing. Developing accurate stress-strain response was 

crucial to understanding the key parameters attributing to the lateral movement in the field.   

Results obtained in the model were compared with recorded field measurements determined 

from inclinometer readings. The initial movement away from the trench was likely dependent on 

stiffness of the natural deposits. The amount and rate of lateral movement toward the trench, 

after backfilling, trended with horizontal consolidation of the soil-bentonite backfill. This study 

can be useful in understanding the lateral behavior of the soft soils for making lateral 

deformation predictions in the case of construction excavations. 
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CHAPTER 1:  INTRODUCTION 

 

1.1 Historical Background 

Henry Petroski, a Civil Engineering professor at Duke University, defines a levee as an 

“elongated naturally occurring ridge or artificially constructed fill or wall, which regulates water 

levels. It is usually earthen and often parallel to the course of a river in its floodplain or along 

low-lying coastlines” (Petroski, 2006). It has been estimated that the United States has 100,000 

miles of levees (ASCE, 2013). Many of them were originally used for agricultural purposes, but 

as cities have grown they have come to serve as a means of flood control for larger communities.  

Since Hurricane Katrina in 2005, the condition of the levees around the United States has 

been a topic of increased concern and speculation. Since that event, much effort has gone into the 

evaluation and improvement of our levees. Sacramento, California was identified as having an 

unacceptably high risk of flooding, greatest of any major city in the country due to its location at 

the confluence of two major rivers the Sacramento River and the American River, shown in 

Figure 1-1, and the city’s outdated levee systems. Records of severe flooding, causing damage to 

the city’s infrastructure, go back over 150 years since the formation of the city in the mid 1800’s 

(SAFCA, 2008). Most residents in the city live at or below the river level. It has been 

hypothesized that in the worst case scenario, if the levees failed, parts of the city would be 

underwater in a matter of hours (Weisner et al., 2012).  A major flood could cause many deaths 

and take a large toll on the local economy. 

The levee system in the Sacramento area was constructed in the late 1800’s to early 

1900’s. They were not built to current engineering standards, and little care was given to the 

suitability of the foundation soils.  Although improvements and remediation to the levee systems 

around Sacramento have been ongoing since before Hurricane Katrina struck New Orleans, 
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Katrina brought about a new nationwide awareness of the issue and concern for our levees. In 

2006 the governor of California declared a state of emergency for the California levees.  He 

issued an executive order for agencies to ramp up evaluation and mitigation of the levees. 

 

Figure 1-1: Map of Sacramento River [accessed from Demis Map Server (2013)] 

As the evaluation of levees in Sacramento progressed, they were assessed to see if they 

met the United States Army Corps of Engineers (USACE) standards for the 100-year flood 

elevation or greater. Cues were also taken from what was learned from studying the New Orleans 

levees after Katrina. Following the assessment, construction to repair and mitigate the levees 

began. 

To ensure that levees are able to meet the desired performance, instrumentation such as 

inclinometers, piezometers, and settlement sensors are used before, during and after the 
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construction process.  This instrumentation, however, must be checked on a regular basis such 

that sufficient engineering judgment can be applied in a timely manner to irregularities in the 

data.  An example of such irregularities could include excessive settlement, lateral deformations, 

or abrupt changes in the groundwater table; changes in the ground that may affect the 

effectiveness of the design. One such irregularity was found on the Sacramento River East Levee 

(SREL) during the construction of a soil-bentonite cutoff wall.  

1.2 Sacramento River East Levee  

One of the levee systems near Sacramento that was identified as an area of concern was 

the SREL. The SREL is part of a system of levees in the Natomas Basin, shown in yellow in 

Figure 1-2. The Natomas Basin is 220 km
2
 and includes not only prime agricultural land and 

commercial developments but also major infrastructure, including the Sacramento International 

Airport, Power Balance Arena, Interstates 5 and 80, and numerous recent residential subdivisions 

with over 10,000 homes. 
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Figure 1-2: Map of Natomas Basin showing levee locations 

 

1.2.1 Background 

The SREL was constructed in the early 1900’s with a dragline used to excavate a trench 

about 6 to 12 feet deep along the centerline of the levee alignment.  Hydraulic dredging 

operations placed material from the adjacent Sacramento River bottom into the excavation area 

between the levees.  This material consisted predominately of sands. The final levee 
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configuration was achieved by covering the dredged sand with the adjacent levee materials.  

These materials consisted predominately of silt, clay, and fine sand. 

1.2.2 Geology 

Mapping by Helley and Harwood (1985) indicates the entire levee is underlain by 

alluvium and basin deposits. Several well-defined paleo-channels were identified intersecting 

and adjacent to SREL.  These deposits were formed by the pre-levee Sacramento River and 

represent historical and Holocene river channels that were deposited, incised/eroded, and 

overlain by younger deposits as the rivers meandered across their flood plains.  These remnant 

river features and alluvial deposits may be filled to partially filled with loose granular or soft 

fine-grained sediments. 

1.2.3 Construction and Mitigation 

Several remedial and emergency flood repairs have been required over the years and 

more recently it was assessed that SREL does not meet USACE criteria to meet 100-year and 

larger flood elevation conditions (Kleinfelder, 2010). 

From 2005 to 2011, construction occurred to bring SREL up to the USACE current levee 

standards per USACE EM 1110-2-1913 (USACE, 2000). As a part of this new construction, an 

adjacent levee was constructed to meet geometry standards next to the existing levee. In some 

areas soil-bentonite cutoff walls were installed to prevent underseepage, and seepage berms were 

constructed on the landside of the levee. 

 In SREL the purpose of the slurry wall was to mitigate underseepage conditions which 

could lead to levee instability by piping and boiling conditions. By cutting off permeable layers 

in the levee, forcing the water to flow under the wall, water pressures are unable to build up 
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underneath the levee during flood conditions.  A typical SREL cross section with a soil-bentonite 

slurry wall is shown in Figure 1-3 below.  

The SREL slurry walls were constructed below the new, adjacent levee, near the location 

of the existing levee toe. The two methods used to construct the walls included trenching, for 

walls less than 100 feet in depth, and the deep–mix-method (DMM), for walls greater than 100 

feet in depth. Cutoff walls varied in depth based on the local subsurface conditions and ranged 

between 20 to 125 feet.  

During construction, instrumentation was installed in the levee to monitor subsurface 

conditions during the construction and for long term. Instrumentation included inclinometers, 

piezometers, and settlement sensors, which monitored lateral movement, porewater pressures, 

and vertical movement respectively. The typical location of the inclinometers are shown in 

Figure 1-3. 

 

Figure 1-3: Typical SREL cross section with SB wall and location of inclinometers 
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1.3 Objectives and Scope of Research 

During construction of the soil-bentonite slurry wall the inclinometer profiles adjacent to 

the cutoff wall showed lateral behavior which coincided with the construction steps of the wall. 

When the trench was excavated and a bentonite-slurry mixture was placed in the trench for 

stability, inclinometers recorded the movement of the soft soils away from the trench. The 

movement away from the trench was counter to what was expected. This movement continued to 

progress until the trench was completely backfilled with the soil-bentonite slurry mixture; 

unexpected horizontal movements of up to 10 mm were recorded. At this point in time, the 

movement recorded by the inclinometers showed that the adjacent soils started moving toward 

the excavation. Greater than 25 mm of movement were observed to distances nearly two times 

the slurry trench depth from the cutoff wall alignment. The deformation that occurred 

corresponded to the location of soft soil layers. Figure 1-4 below shows typical inclinometer 

profiles for a SB slurry wall and a DMM wall. 

 

Figure 1-4: Typical Inclinometer Cumulative Deflection Profiles for a) Slurry Wall and b) 

DMM Wall   
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Due to the unanticipated amount and direction of the lateral soil movement, a finite 

element analysis was developed in order to understand the material behavior properties due to 

the interaction of the  soil-SB slurry and soil-SB fill. The development of the model was done 

through a series of steps including: the development of a cross section; development of soil 

constitutive models and soil parameters; entering the data into the modeling software; modeling 

cutoff wall installation and levee construction; analyzing the results; and comparing the results 

with the data from the field. 

1.4 Overview of Thesis 

The remainder of the thesis discusses in detail the aforementioned project. The discussion 

begins with an overview of this project in the introduction by providing background information 

and the scope of research undertaken by this study. The second chapter provides detailed 

literature review regarding past research of the same nature that has been performed. Chapter 

three gives a thorough description of the modeling process. The results of the modeling and a 

discussion of the results are presented in detail in Chapter four. The fifth chapter presents the 

conclusions determined upon completion of this project  
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1 Introduction 

Using information collected for this literature review, the design and construction of a 

soil-bentonite cutoff wall is discussed in this chapter. Next, case-histories of deformation due to 

the construction of a soil-bentonite slurry wall are presented, as well as a review of finite element 

models of the deformation due to the construction of a soil-bentonite slurry wall that have 

previously been performed by others. Last, an overview of finite element modeling is given, 

including changes that have occurred in the past twenty years that have increased the capabilities 

of finite element modeling programs. 

2.2 Soil –Bentonite Slurry Cutoff Wall Design 

An engineering application of a soil-bentonite (SB) slurry wall is to provide an 

impermeable barrier. The first records of this type of slurry wall being constructed were from the 

USACE in early 1970’s in California (Xanthakos, 1994). This type of wall is typically composed 

of a bentonite, soil, and water mixture.  

The design depth and alignment of the trench is based on the purpose of the wall, as well 

as the site geology and groundwater conditions. Specifications for construction are written and 

focus on quality control efforts including: contractor qualifications, bentonite material 

properties, water quality, bentonite slurry properties, backfill properties, trench excavation 

methods, and soil backfill mixing and placing procedures. A stability analysis is typically 

performed to determine the factor of safety of failure of the trench supported by the slurry and 

help guide the aforementioned specifications.  
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Design procedures focus on the permeability of the soil-bentonite and the stability of the 

trench. The design is highly based on experience. Much of the research performed on soil-

bentonite slurry walls is performed in these areas. Little focus has been given to the stress-state 

of the material during and after the construction of the wall. 

2.3 Slurry Cutoff Wall Construction Procedures 

 The construction procedure for a SB slurry wall are as follows: A trench is excavated 

typically with a backhoe fitted with the appropriate size stick-and-boom for the design depth of 

the wall and appropriate size bucket for the design width, generally two to five feet 

(D’Appolonia, 1980). If deeper penetration of the earth is required than is capable with a 

backhoe, the construction is either performed by supplementing the backhoe excavation with 

clamshell excavation, or another type of construction method like deep soil mixing is employed. 

The soil excavated from the trench is replaced with bentonite slurry, which is mixed prior to use 

at an onsite location.  The purpose of the slurry is to maintain trench stability through the 

construction. The slurry is typically composed of water mixed with 4-6% bentonite by weight 

(Barrier, 1995). The unit weight of the slurry is required to be larger than unit weight of water 

and in its pure form typically ranges from 64 to 70 pcf (Barrier, 1995). Requirements for the 

height of the slurry in the trench are that it to be at least a few feet above the water table and a 

few feet below the top of the trench. Keeping the soil above the water table allows for slurry to 

permeate into the adjacent soil, forming a “filter cake” (Filz et al. 1997). A filter cake is a thin 

layer of impermeable bentonite that forms along the sides of the trench; it contributes to the 

stabilization of the trench when the lateral pressure of the slurry acts against it. 

The backfill mixing and filling typically occurs near the side of the trench. While the 

slurry trench is being excavated at one end, soil-bentonite backfill is placed at the other end with 
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a clamshell or pushed in the trench creating a gradual slope. The backfill displaces the slurry due 

to its higher density. The material is composed of the slurry, removed from the trench, mixed 

with the spoils from the trench. Sometimes offsite material is brought in order to meet backfill 

specifications or to replace excavated soils that may be contaminated. The hydraulic conductivity 

of the backfill typically ranges from 1x10
-7

 cm/s to 1x10
-8

  cm/s (Barrier, 1995), but has been 

recorded to be even smaller in some cases. 

 

Figure 2-1: Soil Bentonite Cutoff Wall Operation [from Rumer and Ryan, 1995 as 

presented by Evans, 1995] 

 

2.4 Case Histories of Deformation due to the Construction of a Soil-Bentonite Slurry Wall 

In the literature, case histories were found that document deformations due to the 

construction of soil-bentonite slurry walls. Manasquan dam in New Jersey was constructed with 

a soil-bentonite slurry wall. Khoury et al. (1992) presents the vertical deformation data recorded 

from the site; the deformation recorded was due to the consolidation of the soil-bentonite 

backfill. The wall was constructed in two parts, a lower and an upper. The lower portion of the 

wall was an average of 56 feet in depth and the upper portion of the wall was an average of 18 

feet in depth. The upper wall was keyed three feet into the lower wall. The wall was three feet or 
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five feet in thickness depending on the location. Vertical settlement was measured by surveying 

settlement plates and borros points. The presented data showed a maximum settlement of 6.6 feet 

in the five-foot thick wall, with strains ranging from three to four percent. The maximum 

settlement in the three-foot wall was 3.2 feet, with strains ranging from seven to nine percent.  

Vertical and lateral deformation recorded in the field during all stages of the SB wall 

construction at a site in Mountain View, California was documented by Baxter (2000). The SB 

wall was being constructed as a means of isolating a contaminated area and preventing 

contamination of local groundwater. Inclinometers and settlement sensors were installed at the 

site. Over the course of the construction and a consolidation period, up to 0.3 feet of vertical 

movement and 0.2 feet of horizontal movement was recorded. The majority of the deformation 

was due to the consolidation of the soil-bentonite backfill. This research is further discussed 

below as it pertains to finite element modeling below. 

2.5 Summary of Finite Element Modeling in Soil-Bentonite Slurry Walls 

Research on deformation modeling of a soil-bentonite slurry wall is very limited. Three 

studies were found in the literature that took place between 1994 and 2000. 

The earliest study documented was performed by Clark (1994).  The aim of the research 

was to study stress-transfer during soil-bentonite consolidation and the possibility of fracturing 

of the soil-bentonite cutoff wall.  The cross section consisted of a soil-bentonite cutoff wall 

constructed into existing ground and then a levee was built on top of it. The constitutive model 

used was the Mohr-Coulomb elastic-plastic model. The following steps were used to model the 

construction. First, initial stresses were established using gravity forces and a coefficient of 

lateral earth pressure (Ko) of 0.5. Second the properties of bentonite slurry replaced the 
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properties of the alluvial soils in the area of the trench in order to represent the excavation of the 

trench under bentonite-slurry. The filter-cake on the sides of the trench was modeled as a 

frictional interface between the trench and the wall.  Last, the properties of the bentonite slurry 

were changed to properties of the soil-bentonite fill incrementally in order to represent the 

backfilling of the trench. The computed results indicated that little lateral deformation occurred 

during the construction of the trench and that soil-arching occurred in the upper 5 meters of the 

soil-bentonite, but that these arching conditions were broken once consolidation occured.  

Another finite element study was briefly mentioned in Barrier (1995). This study was 

used to model the consolidation stresses in a soil-bentonite slurry wall. Few details of the process 

and cross section are discussed, but the author notes that the problem was “imperfectly 

modeled.” The program used could not simulate the excavation process with the bentonite slurry 

or the displacement of the slurry with soil-bentonite backfill.  Also, parameters for the 

embankment soils were chosen based on typical values, as testing on the soil was not available. 

The author also mentions that there was not a method utilized between soil-bentonite elements at 

the trench wall and elements of the native ground to allow sliding to occur. Nevertheless, vertical 

effective stresses in the center of the soil-bentonite slurry wall correlate well with results 

obtained from dilatometer testing performed in the wall. 

An aforementioned study by Baxter (2000) documents the development of a finite 

element model created in attempt to capture all the behavior of vertical and lateral deformation 

recorded in the field during all stages of the SB wall construction The modeling of the SB wall 

was of interest due to vertical and lateral movements that occurred during and after the 

construction that caused a nearby semiconductor manufacturing operation to become unusable.  
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A wealth of data was available for the study. Data included two inclinometers installed at 

the site for monitoring purposes, detailed construction documentation and SB material testing, as 

well as a geotechnical study and testing performed on the local soils. 

The finite element program SAGE (Bentler et al. 1998), developed at Virginia Tech 

University, was used for the finite element analysis. SAGE, an acronym for the “static analysis 

of geotechnical engineering problems,” uses a 2-D finite element method for plane strain and 

axisymmetric conditions.  Newton-Raphson iteration is used in the SAGE program to solve non-

linear finite element equations, which is appropriate for non-linear soil models. A coupled 

porewater pressure and deformation analysis was chosen in SAGE for the trench construction 

steps. An uncoupled analysis was used to establish initial stresses prior to the trench 

construction. 

Initial conditions were modeled to establish preconstruction stresses. All phases of the 

construction were then modeled, which included the excavation of the trench with SB slurry 

material, backfilling of the trench with SB fill, and consolidation of the SB fill of the 

construction of the wall. Each aforementioned step was broken into substeps in SAGE.  A total 

of 33 steps were modeled. First, in step one, the initial stresses were assigned in the model. For 

the second step a surcharge was applied and then removed in the third step. Step four involved 

reassigning horizontal effective stresses. Head boundary conditions were applied in step five and 

were varied in the following steps depending on the recorded water elevations from the field. In 

step six the excavation under the slurry bentonite mixture was modeled, followed by step seven 

where consolidation was allowed to occur. Steps eight through twenty-seven involve modeling 

of the backfilling of the trench. Last, in steps twenty-three through thirty-three the consolidation 

was modeled. 
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Constitutive models were used to model the behavior of the local soils. Laboratory testing 

performed on the soils and SB backfill material was used to develop the models. The constitutive 

model was chosen based on the material type. Sand was modeled using the Duncan and Chang 

(1970) hyperbolic model and clays were modeled using the Modified Cam Clay model. A 

constitutive model was created specifically for the SB material in this project; this model was 

termed the RS model and was based on the Modified Cam Clay model. 

Successful calibration of the model was achieved to match the deformation recorded at 

the site. The calibrated model was then used to perform a parametric study of the site, varying 

site conditions in order to examine how this impacted the deformation. 

2.6 Finite Element Method Modeling Software 

The purpose of finite element analysis software is to solve partial differential equations 

that would otherwise be impossible to solve by hand in order to understand physical processes. 

Many physical processes such as stress analysis, fluid flow, heat transfer and electromagnetics 

can be modeled using the finite element method.  Generally, the problem is broken into elements, 

connected by nodes (called a mesh) in order to obtain an approximate solution.   

Typically in geotechnical problems finite element analysis is used to understand the 

physical processes of stress transfer and/or fluid flow in soil and rock or soil-structure interaction 

problems. 

A huge drawback to finite element models for soil-bentonite slurry walls discussed in the 

previous section is the fact that the programs were more complicated to set up due to the 

computer programs, processors, and memory  available to the users in the 90’s and early 2000’s, 

at the time of their research.  
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For example, in the SAGE program input files had to be generated by hand with a 

spreadsheet and a mesh generation program. Since then, more user-friendly, geotechnical 

specific programs have been developed.  One of those programs is SIGMA/W 2007 (Geostudio, 

2007). The program features preprogrammed soil constitutive models in which the user must 

determine the necessary parameters prior to running the model. While it was documented in 

Baxter (2000) that the SAGE program took six hours to run a model, SIGMA/W is able to 

process more complicated models in a matter of minutes. Performing a finite element model is 

more accessible to the working engineer today, provided he/she has the proper background and 

knowledge. 

The program uses the following two dimensional equation (Equation 1) in conjunction 

with plane strain elements and Gauss-Legendre integration. 

 

   

  (1) 

 

Where: 

[B] = strain-displacement matrix, 

[C] = constitutive matrix, 

{a} = column vector of nodal incremental x- and y-displacements, 

<N> = row vector of interpolating functions, 

A = area along he boundary of an element, 

v = volume of an element, 

b = unit body force intensity, 

p = incremental surface pressure, and 

{Fn} = concentrated nodal incremental loads. 

 

 

 The program has five preprogrammed constitutive models and the option to create a user 

add-in constitutive model including: linear elastic, anisotropic linear-elastic, hyperbolic, Elastic-

plastic, and Modified Cam-clay The models available to use depend on if the user chooses a total 

stress, effective stress with no pressure change or effective stress with porewater pressure change 

        
T T T

n

v v A

B C B dv a b N dv p N dA F        



www.manaraa.com

17 
 

conditions. The user is responsible for choosing the appropriate model for the material and 

developing the parameters specific to the model. 

 Several analysis types are available to use. The user can specify the analysis type based 

on the problem. Initial in-situ stress will need to be developed in the model; this is one of the 

analysis types. After the in-situ stresses are established the user can choose a load/deformation, 

coupled stress-pore pressure, volume change, stress redistribution, or dynamic deformation 

analysis type. 

 Another feature of the program is its ability to accommodate structural elements, 

allowing for soil-structure interaction analysis. 

 The program allows the user to model in stages where changes can be made in the model 

in separate steps. This functionality is appropriate to replicate steps in a construction process or 

changes that reflect field or test conditions. 

In the next section the finite element analysis that was performed of the construction of the 

SREL slurry wall construction is discussed. It was performed in order to analyze the lateral 

deformation at different steps in the construction process. This analysis was developed using 

SIGMA/W. The constitutive models, analysis types, and the overall set-up of the finite element 

model are discussed in detail.  
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CHAPTER 3:   DEVELOPMENT OF A FINITE ELEMENT MODEL FOR SREL WITH 

A SOIL BENTONITE WALL 

 

3.1 Introduction 

Chapter 2 discussed previous finite element analyses that involved deformation related to 

the construction of a soil-bentonite cutoff wall. This chapter presents the development of a finite 

element model deformation model for the construction of a SB cutoff wall in the SREL levee. As 

mentioned in Chapter 1, this model is of particular interest due to the unexpected movements of 

the soft soils adjacent to the wall. The development of this model includes: cross-section 

rationale and location details, development of the soil layering and soil parameters, and model 

set-up. 

3.2 Cross Section Location 

 A cross section at Station 230+00 along SREL was chosen as the representative location 

for the analysis. This choice was based on the identification of soft soils, SPT blowcounts less 

than five in nearby boring logs, and visual classification in construction field reports. Another 

reason was the quantity and quality of instrumentation data at and near Station 230+00.  More 

detail regarding the site is discussed in the following sections. 

3.2.1 Cutoff Wall Construction 

  The soil bentonite slurry wall at 230+00 was built three-feet in width and to a depth of 60 

feet (Elevation -25 feet) below the working platform (Elevation 35 feet). The soil-bentonite 

slurry wall was constructed using a Komatsu PC1250LC excavator with a long boom and stick 

and a three-foot wide bucket. As the material was excavated, bentonite slurry was 

simultaneously pumped from a mixing pond directly into the trench to fill in the area.  Excavated 

soils from the trench, pea gravel, and slurry from the trench were mixed outside the trench to 
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create the soil bentonite fill material. The fill material was placed in the trench and displaced the 

slurry due to the relatively higher density. A two-foot thick soil cap was placed over the top of 

the wall after fill was completed.  The wall was left to consolidate for at least 21 days before 

further adjacent levee fill was added. 

3.2.2 Instrumentation  

An inclinometer (SREL5A-230-R1) was installed on the working platform, 

approximately seven feet from the wall on the waterside. An inclinometer was installed at 

Station 231+00 (SREL5A-231-R1) at the adjacent levee toe about 100 feet away, landside of the 

wall. Adjacent to Station 231+00, a vibrating wire piezometer (SREL5A-231-C2) was placed in 

the soft soil material, approximately 10 feet from the wall, on the landside.  SREL5A-230-R1 

and SREL5A-231-T1 were installed to an elevation of approximately 38 and 35 feet, 10 and 13 

feet below the depth of the slurry wall, respectively. All three instruments were installed after the 

completion of the working platform, but before the start of the wall excavation. 

A settlement point was placed above the wall at Station 230+00 after the wall was 

backfilled. This point was surveyed every two to three days to monitor vertical consolidation 

settlement of the wall. 
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Figure 3-1: (a) Cross section showing inclinometers near Station 230+00. (b) Plan view 

showing inclinometers near Station 230+00 

 

3.2.3 Deformations of Ground Adjacent to the Cutoff Wall 

Readings from SREL5A-230-R1 show approximately 0.6 inches lateral movement of the 

soft soils outward relative to the excavation during the period of time from when the wall was 

excavated and filled with bentonite slurry on September 22, 2010 to the completion of the wall 

with soil-bentonite backfill on September 27, 2010. After the completion of the backfill, both 

SREL5A-230-R1 and SREL5A-231-T1 showed about 0.8 and 1.0 inches of lateral movement 

inward, transverse to the SB wall. Figures 3-2 and 3-3 below show the graphical results of each 

inclinometer. It is important to note that a reading at SREL5A-230-R1 (Figure 3-3) was not 
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performed during the 5 day filling period, so any outward movement that may have occurred 

during this time period was not accounted for at this location. It is also important to note the axis 

A, as shown in Figure 3-1, is not located perpendicular to the SB slurry wall. The deformation 

along axis A and axis B were resolved in order to obtain the cumulative deformation transverse 

to the SB slurry wall shown in Figure 3-3 below. 

 

Figure 3-2: SREL5A-230-R1 Inclinometer Readings on Working Platform. 
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Figure 3-3: SREL5A-231-T1 Inclinometer Reading at Existing Levee Toe 

 

3.3 Modeling Soil Conditions  

Levee and the native alluvial soil layering used in the model was simplified and based on 

visual observations from the nearby boring logs, construction records, and testing data. Similar to 

the model shown in Figure 3-4, the model stratigraphy below the existing levee and constructed 

adjacent levee starts with a eight foot desiccated “crust” layer underlain by a 30 foot-previously 

aforementioned soft soil layer, which was divided into two materials, an upper, lower blow 

count, soft soil and a lower, relatively higher blow count material, soft soil. The upper and lower 

soft material is similar, but the lower layer is relatively stiffer and sandier. The soft soil layers 
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are underlain by a stiff soil, consisting mostly of sandy clay. It can be seen from the data that the 

majority of the lateral movement occurs in the soft soil and dissipates near the bottom of the 

inclinometers in the stiffer soil.  

 

Figure 3-4: Cross Section of Model in SIGMA/W 

Based on piezometer data from SREL2B-230-R1, buildup of porewater pressure in the 

soft silts dissipated quickly; therefore, it was decided that the model was to be run using effective 

stress conditions. The water table was set at 14 feet (NAVD88), which was a conservative 

estimate based on recorded data the time of the construction activities.  Figure 3-5 below shows 

the local vibrating wire piezometers to the cross section. The Verona Gage, which is the 

elevation of the Sacramento River, is also shown along with the fill thickness at the site. 
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Figure 3-5: Summary of Water Table, VWP Piezometer, and Fill Elevation Data near 

Station 230+00 

The model was limited to negative porewater pressures of 600 psf based on a report by 

Kleinfelder (2010b) which performed a detailed stability analysis and strength evaluation of the 

soft SREL soils . 

3.4 Parameter Selection 

The Duncan and Chang (1970) hyperbolic model was used for modeling each soil type. 

Parameters were developed according to Duncan et al. (1980) for each of the soil layers based on 

stress-strain curves from consolidated undrained shear tests on representative samples from 

nearby borings. The hyperbolic modulus method was used to estimate the Effective Modulus for 

the linear elastic method in SIGMA/W. Ko values were estimated from the Mayne and Kulhawy 

(1982) equation. OCR values and strength values used in the above equation were taken from 

prior reports and testing (Kleinfelder 2010, 2010a, and 2010b). All final parameters used in the 

model are shown in the attached Table 3.1. Initial parameter development is discussed below. 
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Existing Levee Core Material – Hyperbolic parameters were selected based on 

comparison values from Duncan et al. 1980, Table 5, for Sacramento River Sand. 

Levee Fill Material – Strength testing data from the North Airport Borrow Site 2A 

(NAB2A) was collected for this research.  The strength tests performed on samples from test pits 

labeled TP-AP-186 and TP-AP-17 were sampled in the upper one to two feet of the test pit.  The 

reason for using these tests is NAB2A is where the adjacent levee fill was obtained from for the 

construction of SREL 2B, near Station 230+00 (the site of interest).   Hyperbolic parameters 

were determined from the test performed on TP-AP-186 and showed a good fit to the actual data. 

An Rf of 0.89, K-modulus of 1000, and an exponent of 0.45 was determined from the hyperbolic 

curve fitting procedure. 

Desiccated Crust -  A consolidated undrained triaxial test from URS Boring 2F-01-29 

was chosen to evaluate hyperbolic parameters for the upper desiccated fine grained soil modeled 

in cross section at Station 230+00. The boring was performed at the landside field area of the 

existing levee. This test was chosen, as the soil description and soil properties are consistent in 

description,  depth, plasticity, and blow counts to samples taken at or near  Station 230+00. 

Strength testing values also correlate with other samples tested in the upper native soils in the 

area.  A consolidation test is also available for the sample.  The initial parameters chosen were an 

Rf of 0.67, K-Modulus of 1400, and an n-exponent of 2.7 (limited to 1.0 in SIGMA/W).  

Upper Soft Soil – Various soft soil specific testing (strength, permeability, and 

consolidation) was performed on samples taken from the northern portion of the SREL site, 

specifically between Station 0+00 and 190+00 (SREL1).  Soft soils are continuous through the 

SREL site and are classified similarly to the soft soils at Station near 230+00, so these tests are 
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thought to be representative of the soft soils throughout the project. An Osterburg sampler was 

required to be used in order to obtain samples in the soft material.  A consolidated undrained test 

performed on a sample taken at an approximate depth of 10-13 feet below the surface at the 

levee toe near Station 188+00. This test was used over the others because the description of the 

material was most similar in description to the soft soil material near Station 230+00. Hyperbolic 

parameters were determined from the test data. The initial parameters were 0.92 for Rf, 0.45 for 

the n exponent, and 750 for the K-Modulus.  The hyperbolic parameters proved to be a good fit 

with the testing data. 

Lower Soft Soil – The soft soil underneath the existing levee was the same material seen 

in borings near the landside levee toe and field areas. One difference was that the blow counts 

were higher in the crown borings versus the landside toe and field borings. This difference is 

thought to be attributed to the fact that the soils beneath the levee were consolidated under the 

weight of the existing levee. The initial parameters were 0.92 for Rf, 0.45 for the n exponent, and 

750 for the K-Modulus, which were the same as the parameters for the Soft Soil 2. The 

parameters were then adjusted to more accurately match the behavior in the field. The final 

parameters used are shown in Table 3-1. 

Firm Sandy Clay - The material beneath the soft soils were stiff and were modeled with 

a linear elastic model using a large modulus of elasticity, as shown in the Table 3-1 below. Since 

little deformation was seen in the inclinometer section embedded in this material and laboratory 

tests were not performed on this material, the modulus was set very high as to not impact its 

influence on the results of the upper layers of soil. It is also recommended by the literature that 

modeling an excavation with finite elements that the mesh should end in a relatively hard 

material (Kulhawy, 1977). 
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Table 3-1: Summary of Parameters Used 

Parameter Sand Fill Clay Fill Desiccat

ed Crust 

Upper 

Soft Soil 

Lower Soft 

Soil 

Firm Sandy 

Clay 

Soil Ben-

tonite 

Total Unit Weight 

(lb/ft3) 110 123 114 113 120 115 80 

Poisson's Ratio 0.36 0.35 0.25 0.34 0.34 0.4 0.32 

Ko 0.8 3 1 0.65 0.65 0.67 0.47 

Hyperbolic Model Parameters 

Cohesion (lb/ft2) 0 100 50 50 50 

 

0 

Friction Angle (degrees) 38 27 27 34 34 

 

32 

Rf 0.85 0.98 0.88 0.92 0.60 

  K 1400 1300 1500 1100 1200 

  n 0.36 0.89 0.67 0.45 0.45 

  Linear Elastic Model Parameters 

E' (lb/ft2) * * * * * 20,000,000 

 Cam Clay Model Parameters 

OCR 

      

1.00 

κ 

      

0.0049 

λ 

      

0.07 

eo 

      

1.0 

Hydraulic Conductivity 

(ft/day) 2.8 0.112 0.28 0.0112 0.0112 0.28 0.00028 

*Estimated from hyperbolic curve 

3.5 Description of Finite Element Model 

Elements were established by meshing with 8-noded quads and 3-noded triangles at a 

global size of 3 feet. A smaller spacing was used near the slurry wall and fill areas. Levee fill and 

the native alluvial soil layering used in the model was simplified as shown in Figure 3-4. 
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3.6 Procedures for Modeling the Construction Sequence 

The model was divided into steps based on the actual construction sequence. All steps 

were modeled with boundary conditions on the bottom and sides of the model. On the left and 

right side of the model the soil was constrained in the x direction and at the bottom of the model 

the soil fixed in the x and y directions. The bottom, left, and right edges were spaced a distance 

from the area of study in the model where these conditions would not have an effect on the area 

of interest. 

Unless otherwise noted, the linear elastic method was used for the soil models. The 

rationale for using this method was to be able to use effective stress parameters with pore water 

pressure changes. Also another advantage was to evaluate the time-rate of consolidation of the 

soil bentonite fill with lateral movement.  When the linear elastic model is used the hydraulic 

conductivity of the soils can be applied and the model can be run over a specified period of time. 

As mentioned, hyperbolic parameters were used to estimate the Effective Modulus of the linear 

elastic model. This is thought to be acceptable modeling practice as the soils at the site did not 

reach a plastic condition; in other words the soil does not go beyond the initial portion of the 

hyperbolic curve.  

The first step was an in-situ analysis, also known as the gravity turn-on analysis. The in-

situ analysis was conducted prior to modeling fill and trench construction to establish horizontal 

and vertical in-situ stresses based on the material unit weight, depth, and Ko values. The 

following three steps modeled the filling of the working platform and stability berm on the 

landside of the existing levee from and elevation of about 26 feet to an elevation of 35 feet and 

30-34 feet respectively. The filling of the working platform was modeled in SIGMA/W with a 

load deformation analysis. 
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Performed with a coupled stress-pore water pressure analysis, the next step was the 

excavation of the sixty-foot deep wall and concurrent filling of the excavation with the bentonite 

slurry fluid. This step was modeled by removing the materials assigned to the regions in the area 

of the trench and applying a stress distribution along the sides and bottom of the trench; modeled 

as the unit weight of the slurry times the depth of the excavation. This was determined to be an 

acceptable procedure, as slurry is fluid and has no shear strength. Field testing on the slurry 

mixture indicates that the slurry material density was about 75 pcf when placed into the trench. 

Due to the nature of the construction, mixing with soil from the trench excavation occurred and 

soil particles were suspended in the slurry mixture. Based on test results, the in place density was 

tested again and varied from about 75-85 pcf. An average value of 80 pcf was used for the stress 

distribution. Part of the excavation was below the water table and was adjusted in the model to 

the fact that slurry is relatively impermeable. The excavation was modeled as drawndown below 

the wall, but was reestablished on the landside of the wall to keep the model symmetrical. Any 

possible differential water pressure was assumed to be negligible. 

Finally, the addition soil-bentonite fill was modeled. Soil bentonite material properties 

were assigned to the regions in the trench. Due to the consolidation properties of the soil 

bentonite fill, a Cam Clay model was chosen to represent the soil-bentonite fill material; 

parameters were selected based on Filz and Baxter (2007) and are included in the summary table 

above. Table 3-2 below shows the steps modeled with SIGMA/W and the range and direction of 

recorded and modeled lateral deformation values in the soft material. 
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Table 3-2: Summary of Steps Used in FEM Model 

Construction Step 

Modeled 

Step Number Time assigned to 

each step 

Type of Analysis 

Initial Stresses 

Assigned 

1 N/A Load Deformation 

Fill 

Placement/Surcharge 

2-3 N/A Load Deformation 

Excavation of trench 

under bentonite slurry 

4 3 days Coupled 

Stresses/Porewater 

Pressure 

Backfill 

trench/consolidation 

5 21 days Coupled 

Stresses/Porewater 

Pressure 

 

In the following chapter the results of the horizontal displacement values obtained in the 

model are compared with the measured displacement in the inclinometers. Further analysis was 

performed to revise and refine the model. The material properties are adjusted and discussed, as 

to how they impacted the model results. 
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CHAPTER 4:  RESULTS AND DISCUSSION 

 

4.1 Introduction 

In this chapter a comparison of the model results and the inclinometer data are discussed. In 

order to better understand what parameters were the most influential in the analysis, a sensitivity 

analysis was performed.  It was also of interest to see what parameters could be adjusted to 

obtain a better fit to the inclinometer data. The initial and revised analysis and influence of the 

material parameters adjusted and their impact on the model are discussed below. Based on the 

results of all the analyses insight is given into the mechanisms that are crucial to understanding 

the lateral deformation behavior observed in the SREL inclinometers during the construction of 

the SB wall. 

4.2 Initial Results -Comparison of Measured and Modeled Deformation 

The results of the lateral deformation during the excavation and subsequent filling were 

compared with the construction platform inclinometer readings.  The two inclinometers, 

SREL5A-230-R1 and SREL5A-231-T1 were used to compare the results of the finite element 

model.  SREL5A-230-R1 was located seven feet from the SB wall trench construction. Data  

from SREL5A-230-R1 used to compare the lateral deformation obtained from the finite element 

model results to the excavation phase as well as the backfilling phase of the SB wall 

construction. SREL5A-231-T1 was located 100 feet away from the trench. The data from this 

inclinometer was used for the backfilling portion of the wall only, as readings were not taken 

during the excavation portion of the construction.  Figures 4-1 and 4-2 show the results of the 

finite element analysis compared to the inclinometer data for both inclinometers. 
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Figure 4-1: Comparison of Finite Element Results with Inclinometer Data at  

SREL5A-230-R1 
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Figure 4-2:Comparison of Finite Element Results with Inclinometer Data at  

SREL5A-231-T1 

 

Results from the finite element analysis were compared with the inclinometer results at 

two separate steps during the construction: before backfilling of the trench occurred (after step 4) 

and 21 days after backfilling occurred (after step 5). It is important to note that negative 

displacement is away from the trench in SREL5A-230-R1 and toward the trench in SREL5A-

230-T1 due to the placement of the inclinometers, shown in Figure 3-1. Also, the upper eight feet 

of SREL5A-231-T1 were above ground at the time of the excavation and backfilling, so no 

results were calculated in the finite element analysis. This instrument was also in a path of 

construction equipment, so some of the movement near the top of the inclinometer may have 

been influenced by construction activities. 
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  As can be seen from the results above, good agreement is achieved between the finite 

element analysis results and the inclinometer data. Both the finite element analysis and the 

inclinometers show that the maximum lateral deformations occur in the soft soils, below the fill 

and desiccated crust, and then decrease with depth. The trend of the movement away from the 

trench after the excavation and before the fill, as well as the movement toward the trench after 

backfilling is shown by both the inclinometers and the finite element modeling. The maximum 

lateral movement recorded in the finite element model before the bentonite fill was placed was 

0.78 inches in the soft soils, and a value of 0.61 inches was recorded in the inclinometers in the 

soft soils. At 23 days after the excavation the inclinometer recorded 0.88 and 0.60 inches of 

movement for the platform and the toe inclinometer respectively at the surface. The finite 

element model predicted a maximum 0.55 inch and 0.20 inches of movement respectively, both 

in the upper layer of soil. The maximum value in the toe inclinometer was taken from the top, as 

discussed this inclinometer was likely impacted by construction activities. A better comparison 

would be to evaluate the deeper layers in which case the difference between the inclinometer and 

model deformations are in better agreement. 

 The model overestimates the deformation in the lower soft soil layer in step 4. The 

model overestimates the lateral deformation in the upper soft soils in the toe inclinometer 21 

days after the excavation.   

4.3 Model Calibration 

Changes in material parameters and cross section geometry were analyzed in an effort to 

obtain a better fit to the inclinometer data, specifically if the location of the maximum 

deformation in the model could better fit the inclinometer results in step 4 and if a better fit could 

be obtained between the model and toe inclinometer data in step 5. Adjustments were made to 
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the model and material parameters were adjusted. Some of the material parameters that were 

adjusted were realistic and better matched the parameters found in the constitutive models. Other 

parameters were adjusted and deemed unreasonable and not used.  

In order to obtain the initial finite element results, shown in Figures 4-1 and 4-2, the K-

modulus, which dictates the stiffness of the soil, had to be increased from the values determined 

from the constitutive models.  Table 4-1 shows the adjustment made for each layer from the 

values determined by the test.  

Table 4-1: Comparison of K-modulus Values Predicted versus Analysis 

Soil Layer Sand Fill Clay Fill Desiccated 

Crust 

Upper Soft 

Soil 

Lower Soft 

Soil 

K-modulus 

predicted 

from 

constitutive 

model 

1400 1000 1400 750 750 

K-modulus 

used for 

initial results 

1400 1300 1500 1100 1200 

K-modulus 

used in 

calibrated 

results 

1400 1000 1400 750 1000 

 

The K-modulus values used in the model were compared with typical values in for 

undrained tests in Table 6 of Duncan et al. (1980). The values in the model seemed unreasonably 

high compared to the typical values for silts and clays in Duncan et al. (1980). Another 

observation while performing the initial analysis was that no matter how much the parameters 

were adjusted, the soft soils were showing approximately the same amount of displacement as 

the upper layers, which was not seen in the SREL5A-230-R1 inclinometer. It was thought that 
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this was occurring because SIGMA/W solves for continuity in terms of displacement and then 

calculates the stresses and strains. In order to break this continuity between the upper soils and 

lower soils an interface layer was applied below the clay fill layer in the form of a slip surface. 

The slip surface was given the values shown in Table 4-2.  

Table 4-2: Summary of Slip Surface Parameters 

Slip Surface 

Parameters 

Cohesion 

(lb/ft
2
) 

Friction 

Angle 

Shear 

Modulus 

(lb/ft
2
) 

Unit Weight 

(lbs/ft
3
) 

Poisson’s 

Ratio 

 50 27° 750,000 114 0.25 

 

 In order to initiate the slip surface a certain amount of displacement must occur 

following Equation 2 below. 

d= 2F/LG         (2) 

Where: 

d = displacement 

F = Force 

L = Length  

G = Shear Modulus 

 

Interface values were chosen based on the properties of the desiccated crust. The shear 

modulus was determined based on the best fit between the inclinometer and finite element data 

after K-modulus values were reset to the values determined from the testing (Table 4-1), as the 

values determined from the testing were considered reasonable and fit the test data well. After a 

good fit was determined material parameters were adjusted to try to refine the data further. 
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The hydraulic conductivity of the soils was thought to be conservative, as the values used 

were based on established values for the SREL levee seepage analysis performed by Kleinfelder 

(2008). In the case of an undrained condition, it was thought less deformation might occur. After 

decreasing the hydraulic conductivity of the soft soils by two orders of magnitude, a significant 

reduction in deformation did not occur during any of the steps 4 and 5 of the analysis. 

Adjustments were made in the Ko values. Reducing the Ko values of the soils decreased 

the lateral deformation during the excavation step, but did not influence the movement during the 

backfilling step. Ultimately the Ko values were not changed, as the initial values were reasonable 

and adjustments needed to make an impact in the deformation made the values vary to much 

from the initial values calculated from Mayne and Kulhawy (1982). 

During the initial analysis a stiffer response during excavation and backfilling was 

required in order to better match the inclinometer data. The Rf parameter also had an influence 

on the stiffness. Increasing the values produced a slightly stiffer response. Like the K-modulus, 

the Rf parameter was also calculated from the CU tests performed on the soils. Altering this 

value enough to create a stiffer response was not realistic based on Duncan et al. (1980). 

Adjusting the soil stratigraphy was also performed to see if it had an influence on the 

finite element model. One example is the soils in the model were adjusted in that the soft soils 

under the existing levee were modeled as stiffer, more consolidated versus the soils in the area of 

the cutoff wall excavation.  The upper and lower soft soil layers were combined and the soft soils 

under the levee were reclassified as consolidated soft soil and the soil in the area of the cutoff 

wall was classified as a less consolidated material. Figure 4-3 shows the adjusted soil geometry. 

The less consolidated material was assigned the parameters assigned to the upper soft soil and 
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the consolidated soil under the existing levee was given similar parameters similar to the lower 

soft soil.  

 

Figure 4-3: Soil Stratigraphy Changes in Calibrated Model 

Other configurations attempted were decreasing the thickness of the desiccated crust and 

increasing the thickness of the firm sandy clay. All of the results obtained from the soil layer 

adjustments resulted in negligible change from the original stratigraphy and therefore were not 

used in the final results. 

The final adjusted results of the finite element model versus the inclinometer are 

presented in Figure 4-4 and 4-5 below. 

SAND FILL CLAY FILL

DESICCATED CRUST

LESS CONSOLIDATED SOFT SOIL
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FIRM SANDY CLAY
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Figure 4-4: Comparison of Finite Element Results with Inclinometer Data after Calibration 

at SREL5A-230-R1 
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Figure 4-5: Comparison of Finite Element Results with Inclinometer Data after Calibration 

at SREL5A-231-T1 

As can be seen from the calibrated results, a curve that better fits the inclinometer data is 

achieved in the calibrated finite element analysis results. The maximum lateral movement 

recorded in the finite element model before the bentonite fill was placed was 0.62 inches in the 

soft soils, and a value of 0.61 inches was recorded in the inclinometers in the soft soils. At 23 

days after the excavation the inclinometer recorded 0.88 and 0.60 inches of movement for the 

platform and the toe inclinometer respectively at the surface. The finite element model predicted 

a maximum 0.30 inch and 0.15 inches of movement respectively, both in the soft soils. When a 

comparison is made between the maximum movement in the soft soils and firmer soils for the 

consolidation, a better agreement in achieved, as can be seen in Figures 4-4 and 4-5. 
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 An attempt was made, as discussed above, by modifying the material parameters, to 

adjust the location of the maximum deformation. Little impact was made that kept material 

parameters in a reasonable range.   

4.4 Evaluation of Lateral Deformation 

The observed pattern of cutoff wall trench deformations can be possibly explained by 

considering the horizontal stress field near the slurry trench.  Prior to excavation, the loose silts 

may have had a horizontal pressure between the active pressure and at rest pressure.  Assuming a 

total unit weight of 110 pcf and a friction angle of 34 degrees, Ko = 1 - sin  = 0.44 and Ka = 

(1+sin)/(1-sin) = 0.28.  The effective horizontal stress increment would be ’h = (Ka to Ko)* 

sub = 13 to 21 pcf.  Upon excavation of the slurry trench, the trench is supported by water-soil-

bentonite slurry with an effective density in excess of 80 -62 pcf = 18 pcf.  While backfill is 

being placed and is still fluid, it typically has an effective density of around 125 - 62 pcf = 63 

pcf.  The apparent pressure of the slurry trench at each step in construction equals or exceeds the 

preceding in situ horizontal pressures.  Only when the backfill stops being a fluid (due to lack of 

shearing due to trench backfilling and sufficient initial reduction in pore pressures to gain some 

strength) will the horizontal stresses be reduced ’h = Ka *sub = 18 pcf.   

The majority of the movements toward the wall resulted after the slurry trench was no 

longer fluid and was consolidating.  Since movement toward the slurry wall were observed for 

several weeks in most instances, the additional horizontal movements after completion of filling 

and apparent solidification of the backfill are hypothesized to result primarily from horizontal 

consolidation of the slurry backfill.  Typical soil-bentonite backfill properties were a dry unit 

weight of 98 pcf, initial water content of 28 percent and 40 to 80 percent fines.  Based on 
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consolidation tests for project backfill, the backfill should experience 5 to 12 percent 

consolidation strain, or 1 to 4 inches of lateral movement at top and bottom, respectively, for a 3-

foot-thick cutoff wall if all consolidation were accommodated laterally.  The actual distribution 

and magnitude of lateral consolidation would be dependent on the continuity and shape of any 

soil wedge deformation of the adjacent native soils. 

Laboratory time rate of consolidation for backfill was approximately 8 square feet per 

year.  Based on these parameters, a 3-foot-wide slurry wall controlled by double-sided drainage 

should be 50 percent consolidated at 3 weeks and 90 percent consolidated at 12 weeks.  This 

duration is roughly consistent with the continuation of lateral movements observed for the SREL 

cutoff wall. 

Figure 4-6 shows a comparison between inclinometer deflections and trench backfill 

settlements as a function of time.  Settlement points consisted of a plywood platform installed on 

the trench backfill with a pipe riser extending above the temporary soil cover to allow survey 

readings.  The settlement points were installed shortly after the trench backfill was completed.  

These settlement points allowed monitoring to confirm that backfill settlement was at a slow rate 

before permanent cap construction, to ensure that a horizontal gap or void would not occur at the 

top of the slurry wall after adjacent levee completion.  The pattern and rate of reduction of 

settlements and lateral movements is comparable to the shape of the theoretical time-rate 

settlement curve computed for a 3-foot-thick consolidating layer, i.e. the width of the trench.  

Figure 4-6 suggests that slurry wall consolidation was approximately 50 percent complete when 

the working platform inclinometer and settlement sensors were removed at about 3 weeks after 

completion of backfill.   
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Figure 4-6: Comparison between Inclinometer Deflections and Trench Backfill Settlement 

Measurements versus Time 

 

The description of the modes of deformation described above fit with what was 

determined by the finite element analysis.  In step 4, finite element results were impacted by the 

material properties, specifically the stiffness of the soil layers. Whereas in step 5, although 

stiffness did have some impact relative to the movement in step 4, the movement occurred more 

uniformly across all soil layers, and related to the consolidation of the backfill material assigned 

to the trench. 

 

 

 

 

 

 



www.manaraa.com

44 
 

CHAPTER 5:  CONCLUSIONS 

  

The importance of improving the levee systems surrounding Sacramento, California has 

been elevated since Hurricane Katrina. The heightened awareness produced a sense of urgency to 

repair the failing levees. One of the levees that went through vital upgrades was the SREL levee, 

just north of the city. During the construction of soil-bentonite slurry walls on the levee 

unexpected lateral movements were recorded by inclinometers. In order to evaluate the lateral 

movements, a finite element model of a soil-bentonite cutoff wall was developed in this thesis to 

replicate the construction process of a soil-bentonite slurry wall constructed in the SREL levee.  

Case studies of the deformation of soil-bentonite cutoff walls were discussed in order to 

try to better understand the construction process and soil deformation behavior. Also, previous 

examples of finite element modeling of soil-bentonite cutoff walls were presented. The examples 

were found to be limited and the technology used to produce them has been updated significantly 

since their time. Due to the advances, it become more feasible for today’s geotechnical engineer 

to use and evaluate a finite element analysis program.  

A finite element analysis program was used to model a cross section of the SREL levee. 

The construction in the model was set-up in several steps to simulate a staged analysis, as 

discussed in the case history. To model the site conditions, geotechnical data were compiled 

from laboratory tests, field tests, and in-situ tests. From this data, a soil profile was created and  

constitutive models were developed from laboratory testing performed on local samples. 

SIGMA/W was used for the analysis. Fully coupled fluid flow and deformation analyses were 

used. Ultimately a linear-elastic model was used with the modulus based on parameters from the 
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development of the Duncan and Chang (1970) hyperbolic model. A modified Cam Clay model 

was used for the soil-bentonite fill material based on Filtz and Baxter (2007). 

The excavation step was modeled by removing the elements in the trench and applying 

stress distributions to the trench wall and trench bottom to represent the bentonite-water slurry 

pressure. The backfilling step was modeled by assigning the soil-bentonite properties to the area 

in the model, previously removed in the excavation step. After backfilling, the initial excess pore 

pressures in the soil-bentonite were allowed to dissipate over time, which was modeling the 

consolidation of the soil-bentonite. 

With some adjustments to the parameters the lateral deformation results determined by 

the finite element model proved to fit the inclinometer data within reason. The model was then 

adjusted to determine the sensitivity of various parameters. It was calibrated in an attempt to fit 

in inclinometer trends as well. The following changes were made during calibration. The K-

modulus was reduced to better fit the laboratory data and an interface layer was applied between 

the boundary of the clay fill and the desiccated crust. Both of these changes resulted in a better 

fit to the data compiled from the inclinometer. 

It was thought that the fact that SIGMA/W calculates continuity in terms of 

displacement could be causing some of the variation seen between the actual results and the 

finite element model. In order to get more accurate results, interface layers would need to be 

applied to the border between layers. This seems unpractical for modeling purposes, as little 

information is known about the frictional properties between each of the layers. Also, it is 

important to note that the model is greatly simplified. It is likely the soil stratigraphy varies 
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greatly in all directions. A finite element model is meant to give an estimate and for this thesis 

that goal is met.  

One of the most important lessons from performing this analysis is that the background 

knowledge of soil mechanics is important along with how the computer program is using the 

data that it is entered into it.  While a program like SIGMA/W has a lot of processing power 

making modeling available to the working engineer, good engineering judgement is still 

necessary. 
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APPENDIX  

 

Constitutive Modeling Results 
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Soil: Fill Material Borrow Site 2A 

      

Confining Pressures 

Data for Deviatoric Modulus Parameters 

  70% Stress  Level 95% Stress Level 

σ3 (σ1-σ3)f σ1-σ3 εa εa/(σ1-σ3) σ1-σ3 εa εa/(σ1-σ3) 

288 966 676.2 0.0014 2.07E-06 917.7 0.0224 2.44E-05 

806 1769 1238.3 0.0015 1.21E-06 1680.6 0.012 7.14E-06 

1765 3323 2326.1 0.009 3.87E-06 3156.9 0.0311 9.85E-06 

        

        Pa= 2116 psf 

     

       
 

σ3/Pa 1/(σ1-σ3)ult Rf Ei/Pa 

    
0.1 1.06E-03 1.03 813 

    0.4 5.65E-04 1.00 1297 

    0.8 2.71E-04 0.90 330 

    

 

Rf Average= 0.98 

      

 

 

 

 

 

5
1
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Raw Test Data 
    

 

     Confining 
Pressures 

          Sigma 3 
          psf Pa (psf) Sigma3/Pa 

        288 2116 0.13610586 
        806 2116 0.380907372 
        1765 2116 0.834120983 
        

           

           

           Sigma 3 = 288 
psf 

Axial 
Strain 

Deviator 
Stress 

 

Sigma 3 = 806 
psf 

Axial 
Strain 

Deviator 
Stress 

 

Sigma 3 = 1765 
psf 

Axial 
Strain 

Deviator 
Stress 

 
0.00 84 

  
0.00 137 

  
0.00 48 

 
0.10 614 

  
0.10 960 

  
0.10 1162 

 
0.20 812 

  
0.20 1255 

  
0.20 1397 

 
0.30 877 

  
0.30 1353 

  
0.31 1160 

 
0.42 942 

  
0.40 1417 

  
0.41 1159 

 
0.51 974 

  
0.50 1481 

  
0.51 1124 

 
0.61 973 

  
0.60 1545 

  
0.62 1660 

 
0.71 1038 

  
0.71 1544 

  
0.72 1826 

 
0.81 1037 

  
0.81 1542 

  
0.82 1891 

 
0.91 1036 

  
0.91 1540 

  
0.92 1956 

 
1.03 1002 

  
1.01 1571 

  
1.03 2055 

 
1.13 1033 

  
1.11 1635 

  
1.13 2119 

 
1.23 1032 

  
1.21 1633 

  
1.23 2151 

 
1.33 999 

  
1.31 1697 

  
1.33 2215 

 
1.42 998 

  
1.41 1695 

  
1.44 2213 

 
1.54 996 

  
1.51 1629 

  
1.53 2277 

 
1.64 995 

  
1.61 1692 

  
1.64 2308 

 
1.74 962 

  
1.71 1690 

  
1.74 2372 

 
1.84 993 

  
1.81 1656 

  
1.85 2403 

 
1.94 992 

  
1.91 1719 

  
1.95 2433 

 
2.06 959 

  
2.01 1685 

  
2.05 2464 

 
2.16 958 

  
2.12 1683 

  
2.15 2528 

 
2.26 989 

  
2.21 1681 

  
2.26 2492 

5
2

 

 5
1
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2.35 956 

  
2.31 1647 

  
2.36 2522 

 
2.45 955 

  
2.41 1678 

  
2.46 2552 

 
2.57 986 

  
2.52 1676 

  
2.56 2583 

 
2.67 1017 

  
2.62 1674 

  
2.67 2646 

 
2.77 984 

  
2.72 1673 

  
2.77 2643 

 
2.87 983 

  
2.82 1671 

  
2.87 2673 

 
2.97 982 

  
2.92 1669 

  
2.97 2670 

 
3.09 981 

  
3.02 1667 

  
3.08 2700 

 
3.18 1012 

  
3.12 1666 

  
3.18 2763 

 
3.28 1011 

  
3.22 1664 

  
3.28 2760 

 
3.38 1010 

  
3.32 1630 

  
3.38 2790 

 
3.48 1009 

  
3.42 1661 

  
3.49 2787 

 
3.60 1008 

  
3.52 1691 

  
3.59 2784 

 
3.70 1007 

  
3.62 1721 

  
3.69 2846 

 
3.80 1006 

  
3.72 1719 

  
3.79 2843 

 
3.90 1005 

  
3.82 1654 

  
3.90 2840 

 
4.00 1003 

  
3.93 1684 

  
4.00 2869 

 
4.11 970 

  
4.03 1713 

  
4.10 2899 

 
4.21 969 

  
4.13 1712 

  
4.20 2863 

 
4.31 968 

  
4.23 1710 

  
4.31 2892 

 
4.41 999 

  
4.33 1676 

  
4.41 2889 

 
4.51 966 

  
4.43 1738 

  
4.51 2918 

 
4.63 997 

  
4.53 1736 

  
4.61 2915 

 
4.73 964 

  
4.63 1703 

  
4.72 2944 

 
4.83 963 

  
4.73 1764 

  
4.82 2973 

 
4.93 962 

  
4.83 1699 

  
4.92 3002 

 
5.02 961 

  
4.93 1760 

  
5.02 2999 

 
5.14 929 

  
5.03 1727 

  
5.13 3028 

 
5.24 928 

  
5.13 1725 

  
5.23 3025 

 
5.34 927 

  
5.23 1692 

  
5.34 3053 

 
5.44 926 

  
5.34 1721 

  
5.43 3050 

 
5.54 925 

  
5.44 1782 

  
5.54 3047 

 
5.66 924 

  
5.53 1687 

  
5.64 3075 

 
5.76 923 

  
5.64 1747 

  
5.74 3072 

 
5.86 922 

  
5.74 1714 

  
5.85 3069 

 
5.95 921 

  
5.84 1712 

  
5.95 3097 

5
3
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6.05 920 

  
5.94 1710 

  
6.05 3094 

 
6.15 919 

  
6.04 1709 

  
6.15 3090 

 
6.27 918 

  
6.14 1707 

  
6.26 3119 

 
6.37 917 

  
6.24 1736 

  
6.36 3084 

 
6.47 916 

  
6.34 1765 

  
6.46 3080 

 
6.57 915 

  
6.44 1763 

  
6.56 3077 

 
6.67 914 

  
6.54 1730 

  
6.67 3105 

 
6.79 912 

  
6.64 1728 

  
6.77 3102 

 
6.88 912 

  
6.74 1757 

  
6.87 3098 

 
6.98 911 

  
6.84 1755 

  
6.98 3126 

 
7.08 910 

  
6.95 1753 

  
7.07 3154 

 
7.18 909 

  
7.05 1751 

  
7.18 3151 

 
7.30 938 

  
7.15 1750 

  
7.28 3210 

 
7.40 968 

  
7.25 1748 

  
7.38 3206 

 
7.50 967 

  
7.35 1746 

  
7.48 3203 

 
7.60 966 

  
7.45 1744 

  
7.59 3199 

 
7.70 965 

  
7.55 1742 

  
7.69 3227 

 
7.81 964 

  
7.65 1771 

  
7.79 3254 

 
7.91 963 

  
7.75 1769 

  
7.90 3251 

 
8.01 992 

  
7.85 1828 

  
8.00 3278 

 
8.11 960 

  
7.95 1795 

  
8.10 3275 

 
8.21 990 

  
8.05 1793 

  
8.21 3271 

 
8.33 958 

  
8.15 1761 

  
8.31 3267 

 
8.43 957 

  
8.25 1789 

  
8.40 3295 

 
8.53 986 

  
8.35 1817 

  
8.51 3291 

 
8.63 955 

  
8.46 1815 

  
8.61 3287 

 
8.72 954 

  
8.56 1783 

  
8.72 3314 

 
8.84 983 

  
8.66 1781 

  
8.82 3311 

 
8.94 952 

  
8.76 1809 

  
8.92 3338 

 
9.04 951 

  
8.86 1838 

  
9.02 3334 

 
9.14 950 

  
8.96 1836 

  
9.13 3361 

 
9.24 949 

  
9.06 1833 

  
9.23 3357 

 
9.36 947 

  
9.16 1831 

  
9.33 3323 

 
9.46 946 

  
9.26 1799 

  
9.44 3349 

 
9.55 915 

  
9.36 1827 

  
9.54 3376 

 
9.67 884 

  
9.46 1825 

  
9.64 3373 
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9.75 883 

  
9.56 1823 

  
9.74 3369 

 
9.87 912 

  
9.66 1821 

  
9.84 3365 

 
9.97 881 

  
9.76 1819 

  
9.95 3361 

 
10.07 880 

  
9.87 1787 

  
10.05 3387 

 
10.17 909 

  
9.97 1786 

  
10.15 3384 

 
10.27 908 

  
10.06 1843 

  
10.25 3410 

 
10.39 907 

  
10.16 1841 

  
10.36 3406 

 
10.48 876 

  
10.27 1809 

  
10.46 3402 

 
10.58 935 

  
10.37 1866 

  
10.57 3398 

 
10.68 934 

  
10.47 1864 

  
10.67 3395 

 
10.78 933 

  
10.57 1862 

  
10.77 3421 

 
10.90 931 

  
10.67 1801 

  
10.87 3417 

 
11.00 930 

  
10.77 1828 

  
10.97 3443 

 
11.10 959 

  
10.87 1856 

  
11.08 3469 

 
11.20 928 

  
10.97 1942 

  
11.18 3435 

 
11.30 927 

  
11.07 1852 

  
11.28 3491 

 
11.39 926 

  
11.17 1879 

  
11.38 3457 

 
11.51 954 

  
11.28 1877 

  
11.48 3483 

 
11.61 953 

  
11.37 1816 

  
11.59 3449 

 
11.71 952 

  
11.47 1931 

  
11.69 3475 

 
11.81 980 

  
11.58 1812 

  
11.79 3501 

 
11.91 979 

  
11.68 1926 

  
11.89 3527 

 
12.03 978 

  
11.78 1808 

  
12.00 3522 

 
12.13 977 

  
11.88 1864 

  
12.10 3489 

 
12.23 1005 

  
11.98 1833 

  
12.20 3544 

 
12.32 975 

  
12.08 1860 

  
12.30 3540 

 
12.42 1003 

  
12.18 1886 

  
12.41 3506 

 
12.54 1001 

  
12.28 1884 

  
12.51 3561 

 
12.64 1000 

  
12.38 1911 

  
12.61 3557 

 
12.74 1028 

  
12.48 1909 

  
12.72 3553 

 
12.84 1027 

  
12.58 1907 

  
12.82 3549 

 
12.94 1025 

  
12.68 1904 

  
12.92 3515 

 
13.06 995 

  
12.78 1902 

  
13.02 3540 

 
13.16 1023 

  
12.88 1900 

  
13.13 3536 

 
13.25 1022 

  
12.99 1898 

  
13.23 3532 

 
13.35 992 

  
13.08 1896 

  
13.33 3528 
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13.45 991 

  
13.19 1893 

  
13.43 3553 

 
13.57 989 

  
13.29 1891 

  
13.54 3548 

 
13.67 988 

  
13.39 1918 

  
13.64 3515 

 
13.77 987 

  
13.49 1887 

  
13.74 3540 

 
13.87 957 

  
13.59 1885 

  
13.84 3536 

 
13.97 985 

  
13.69 1996 

  
13.95 3532 

 
14.09 955 

  
13.79 1909 

  
14.05 3557 

 
14.18 982 

  
13.89 1935 

  
14.15 3552 

 
14.28 981 

  
13.99 1876 

  
14.26 3577 

 
14.38 1008 

  
14.09 1902 

  
14.36 3573 

 
14.48 1007 

  
14.19 1900 

  
14.46 3569 

 
14.60 1034 

  
14.29 1926 

  
14.56 3593 

 
14.70 1033 

  
14.39 1924 

  
14.66 3560 

 
14.80 1032 

  
14.50 1921 

  
14.77 3556 

 
14.90 1031 

  
14.59 1947 

  
14.87 3580 

 
15.00 1058 

  
14.69 1917 

  
14.97 3576 

 
15.11 1084 

  
14.80 1914 

  
15.07 3600 

 
15.21 1083 

  
14.90 1912 

  
15.18 3625 

 
15.31 1082 

  
15.00 1938 

  
15.28 3592 

 
15.41 1081 

  
15.10 1964 

  
15.38 3644 

 
15.51 1107 

  
15.20 1905 

  
15.49 3640 

 
15.63 1106 

  
15.30 1959 

  
15.59 3635 

 
15.73 1132 

  
15.40 1985 

  
15.69 3660 

 
15.83 1131 

  
15.50 1982 

  
15.79 3655 

 
15.92 1158 

  
15.60 1952 

  
15.90 3651 

 
16.02 1156 

  
15.71 1950 

  
16.00 3675 

 
16.14 1155 

  
15.80 1975 

  
16.10 3670 

 
16.24 1153 

  
15.91 1945 

  
16.20 3666 

 
16.34 1180 

  
16.00 1915 

  
16.30 3690 

 
16.44 1178 

  
16.11 1940 

  
16.41 3713 

 
16.54 1177 

  
16.21 1966 

  
16.51 3709 

 
16.64 1203 

  
16.31 1963 

  
16.61 3760 

 
16.76 1201 

  
16.41 1961 

  
16.71 3756 

 
16.85 1200 

  
16.50 1986 

  
16.82 3751 

 
16.95 1198 

  
16.61 2011 

  
16.92 3747 

 
17.05 1197 

  
16.71 1954 

  
17.03 3742 
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17.15 1196 

  
16.81 1979 

  
17.12 3737 

 
17.27 1194 

  
16.91 1949 

  
17.23 3761 

 
17.37 1192 

  
17.01 1974 

  
17.33 3756 

 
17.47 1191 

  
17.11 1972 

  
17.43 3779 

 
17.57 1190 

  
17.21 1969 

  
17.54 3747 

 
17.67 1188 

  
17.31 1967 

  
17.64 3770 

 
17.78 1186 

  
17.41 2019 

  
17.74 3738 

 
17.88 1185 

  
17.51 2017 

  
17.84 3761 

 
17.98 1184 

  
17.62 2014 

  
17.95 3728 

 
18.08 1182 

  
17.72 2012 

  
18.05 3723 

 
18.18 1181 

  
17.81 1982 

  
18.15 3746 

 
18.30 1179 

  
17.91 2007 

  
18.25 3742 

 
18.40 1205 

  
18.02 2004 

  
18.36 3709 

 
18.50 1203 

  
18.12 2029 

  
18.46 3705 

 
18.60 1202 

  
18.22 1999 

  
18.56 3700 

 
18.69 1200 

  
18.32 1997 

  
18.66 3723 

 
18.81 1225 

  
18.42 1994 

  
18.77 3746 

 
18.91 1197 

  
18.52 1992 

  
18.87 3713 

 
19.01 1222 

  
18.62 2016 

  
18.97 3764 

 
19.11 1248 

  
18.72 1987 

  
19.07 3732 

 
19.21 1246 

  
18.82 2011 

  
19.17 3754 

 
19.33 1244 

  
18.92 2009 

  
19.28 3777 

 
19.43 1270 

  
19.03 2033 

  
19.38 3799 

 
19.53 1268 

  
19.12 2004 

  
19.48 3767 

 
19.62 1293 

  
19.22 2001 

  
19.59 3790 

 
19.72 1292 

  
19.33 1999 

  
19.69 3785 

     
19.43 1996 

  
19.79 3807 

     
19.53 2047 

  
19.89 3802 

     
19.62 1991 

  
20.00 3797 

     
19.73 2042 

  
20.10 3792 

     
19.83 2039 

    

     
19.93 1984 

    

     
20.03 2034 
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Rf  0.98 
 

Ei B σ3 Ei B σ3 Ei B σ3 

c 0.00 
 

862502.25 0.00 288.00 
1370516.8

6 0.00 806.00 
1950153.

22 0.00 1765.00 

Pa 2116 psf                   

K 1000 
 

                  

n 0.45 
 

                  

   
                  

   
                  

   
                  

   
                  

1/(σ1-σ3)ult 
  

                  

1.06E-03 
  

                  

5.65E-04 
  

Axial 
Strain 

Deviator 
Stress 

Hyperbolic 
σ1-σ3 

Axial 
Strain 

Deviator 
Stress 

Hyperbolic 
σ1-σ3 

Axial 
Strain 

Deviator 
Stress 

Hyperbolic 
σ1-σ3 

2.71E-04 
  

0.00 83.63 0.0 0.00 136.76 0 0.00 47.95 0 

   
0.10 613.57 447.2 0.10 960.06 783.2 0.10 1162.20 1285.4 

   
0.20 811.52 606.1 0.20 1255.24 1081.9 0.20 1397.13 1916.4 

   
0.30 876.83 687.5 0.30 1352.62 1239.4 0.31 1159.80 2285.4 

   
0.42 941.83 744.7 0.40 1416.90 1341.6 0.41 1158.58 2531.5 

   
0.51 973.89 775.7 0.50 1481.08 1409.7 0.51 1123.80 2695.8 

   
0.61 972.92 798.2 0.60 1545.13 1459.1 0.62 1660.09 2826.0 

   
0.71 1037.79 815.3 0.71 1543.57 1496.6 0.72 1826.19 2922.8 

   
0.81 1036.76 828.7 0.81 1542.01 1526.1 0.82 1891.38 3000.1 

   
0.91 1035.73 839.5 0.91 1540.42 1550.3 0.92 1956.36 3065.6 

   
1.03 1001.67 850.0 1.01 1571.50 1569.8 1.03 2054.72 3118.0 

   
1.13 1033.45 857.2 1.11 1635.11 1586.1 1.13 2119.38 3163.9 

   
1.23 1032.42 863.4 1.21 1633.48 1599.7 1.23 2150.55 3202.3 

   
1.33 998.66 868.7 1.31 1696.90 1611.7 1.33 2215.05 3234.9 

   
1.42 997.66 873.3 1.41 1695.14 1622.3 1.44 2212.78 3263.5 

   
1.54 996.46 878.1 1.51 1628.50 1631.2 1.53 2277.12 3288.2 

   
1.64 995.46 881.6 1.61 1691.69 1639.4 1.64 2307.94 3311.6 

   
1.74 961.88 884.7 1.71 1689.96 1646.6 1.74 2371.94 3332.0 

   
1.84 993.46 887.5 1.81 1655.86 1653.0 1.85 2402.63 3350.3 

   
1.94 992.46 890.0 1.91 1718.85 1658.8 1.95 2433.30 3366.6 

   
2.06 958.78 892.8 2.01 1684.75 1664.2 2.05 2463.85 3381.7 

   
2.16 957.81 894.9 2.12 1683.02 1669.0 2.15 2527.50 3394.9 
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2.26 989.25 896.7 2.21 1681.36 1673.2 2.26 2491.64 3408.3 

   
2.35 955.88 898.5 2.31 1647.39 1677.3 2.36 2522.12 3419.4 

   
2.45 954.91 900.1 2.41 1677.87 1680.9 2.46 2552.43 3430.1 

   
2.57 986.05 901.9 2.52 1676.15 1684.4 2.56 2582.67 3440.0 

   
2.67 1017.32 903.2 2.62 1674.38 1687.6 2.67 2645.68 3449.3 

   
2.77 984.05 904.5 2.72 1672.66 1690.5 2.77 2642.98 3457.5 

   
2.87 983.05 905.7 2.82 1670.90 1693.3 2.87 2673.01 3465.5 

   
2.97 982.05 906.8 2.92 1669.17 1695.9 2.97 2670.28 3472.7 

   
3.09 980.85 908.0 3.02 1667.44 1698.3 3.08 2700.15 3479.8 

   
3.18 1011.95 909.0 3.12 1665.78 1700.4 3.18 2762.73 3486.3 

   
3.28 1010.91 909.9 3.22 1664.02 1702.6 3.28 2759.73 3492.6 

   
3.38 1009.88 910.7 3.32 1630.39 1704.6 3.38 2789.56 3498.2 

   
3.48 1008.85 911.5 3.42 1660.57 1706.4 3.49 2786.59 3503.7 

   
3.60 1007.61 912.5 3.52 1690.65 1708.2 3.59 2783.55 3509.0 

   
3.70 1006.57 913.2 3.62 1720.63 1709.9 3.69 2845.74 3513.8 

   
3.80 1005.54 913.9 3.72 1718.88 1711.5 3.79 2842.75 3518.4 

   
3.90 1004.50 914.5 3.82 1653.63 1713.0 3.90 2839.70 3522.9 

   
4.00 1003.47 915.1 3.93 1683.54 1714.5 4.00 2869.11 3527.1 

   
4.11 970.43 915.8 4.03 1713.42 1715.9 4.10 2898.50 3531.0 

   
4.21 969.43 916.4 4.13 1711.63 1717.2 4.20 2863.00 3534.8 

   
4.31 968.43 916.9 4.23 1709.84 1718.4 4.31 2892.27 3538.5 

   
4.41 999.13 917.4 4.33 1676.47 1719.6 4.41 2889.15 3542.0 

   
4.51 966.43 917.9 4.43 1737.76 1720.7 4.51 2918.37 3545.3 

   
4.63 996.85 918.5 4.53 1735.94 1721.8 4.61 2915.28 3548.4 

   
4.73 964.23 918.9 4.63 1702.70 1722.8 4.72 2944.28 3551.5 

   
4.83 963.23 919.3 4.73 1763.70 1723.8 4.82 2973.20 3554.5 

   
4.93 962.23 919.7 4.83 1699.11 1724.8 4.92 3002.24 3557.2 

   
5.0 961.2 920.1 4.93 1759.94 1725.71 5.02 2998.99 3559.9 

   
5.1 928.6 920.6 5.03 1726.80 1726.57 5.13 3027.73 3562.6 

   
5.2 927.6 920.9 5.13 1724.94 1727.43 5.23 3024.57 3565.0 

   
5.3 926.6 921.3 5.23 1691.91 1728.23 5.34 3053.08 3567.5 

   
5.4 925.7 921.6 5.34 1721.29 1729.03 5.43 3049.95 3569.7 

   
5.5 924.7 921.9 5.44 1781.82 1729.78 5.54 3046.56 3572.0 

   
5.7 923.5 922.3 5.53 1686.53 1730.50 5.64 3075.3 3574.07 

   
5.8 922.6 922.6 5.64 1746.92 1731.22 5.74 3071.9 3576.16 
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5.9 921.6 922.9 5.74 1713.95 1731.91 5.85 3068.5 3578.17 

   
6.0 920.6 923.2 5.84 1712.16 1732.55 5.95 3097.0 3580.09 

   
6.1 919.7 923.5 5.94 1710.33 1733.19 6.05 3093.6 3581.97 

   
6.2 918.7 923.7 6.04 1708.51 1733.80 6.15 3090.2 3583.83 

   
6.3 917.5 924.0 6.14 1706.68 1734.40 6.26 3118.5 3585.56 

   
6.4 916.6 924.3 6.24 1735.77 1734.97 6.36 3083.5 3587.24 

   
6.5 915.6 924.5 6.34 1764.75 1735.54 6.46 3080.1 3588.89 

   
6.6 914.6 924.7 6.44 1762.86 1736.08 6.56 3076.7 3590.50 

   
6.7 913.7 925.0 6.54 1730.15 1736.61 6.67 3104.8 3592.09 

   
6.8 912.5 925.2 6.64 1728.29 1737.11 6.77 3101.5 3593.54 

   
6.9 911.5 925.4 6.74 1757.18 1737.61 6.87 3098.1 3595.01 

   
7.0 910.6 925.6 6.84 1755.33 1738.08 6.98 3126.0 3596.47 

   
7.1 909.6 925.8 6.95 1753.36 1738.56 7.07 3154.2 3597.77 

   
7.2 908.6 926.0 7.05 1751.43 1739.02 7.18 3150.6 3599.15 

   
7.3 938.2 926.3 7.15 1749.61 1739.45 7.28 3209.8 3600.46 

   
7.4 967.9 926.4 7.25 1747.68 1739.88 7.38 3206.2 3601.73 

   
7.5 966.9 926.6 7.35 1745.79 1740.30 7.48 3202.7 3602.95 

   
7.6 965.8 926.8 7.45 1743.89 1740.71 7.59 3199.1 3604.18 

   
7.7 964.8 927.0 7.55 1742.00 1741.10 7.69 3226.7 3605.36 

   
7.8 963.6 927.2 7.65 1770.52 1741.49 7.79 3254.4 3606.46 

   
7.9 962.5 927.3 7.75 1768.63 1741.86 7.90 3250.8 3607.58 

   
8.0 992.0 927.5 7.85 1827.51 1742.22 8.00 3278.2 3608.67 

   
8.1 960.5 927.6 7.95 1795.09 1742.59 8.10 3274.6 3609.73 

   
8.2 989.9 927.8 8.05 1793.17 1742.93 8.21 3270.8 3610.79 

   
8.3 958.2 927.9 8.15 1760.93 1743.27 8.31 3267.3 3611.76 

   
8.4 957.2 928.1 8.25 1789.22 1743.61 8.40 3294.7 3612.71 

   
8.5 986.5 928.2 8.35 1817.47 1743.93 8.51 3290.9 3613.70 

   
8.6 955.1 928.4 8.46 1815.48 1744.25 8.61 3287.2 3614.64 

   
8.7 954.1 928.5 8.56 1783.34 1744.55 8.72 3314.3 3615.58 

   
8.8 983.0 928.6 8.66 1781.34 1744.86 8.82 3310.6 3616.48 

   
8.9 951.8 928.8 8.76 1809.47 1745.16 8.92 3337.6 3617.35 

   
9.0 950.7 928.9 8.86 1837.52 1745.44 9.02 3334.0 3618.18 

   
9.1 949.7 929.0 8.96 1835.58 1745.71 9.13 3360.8 3619.04 

   
9.2 948.7 929.1 9.06 1833.47 1746.00 9.23 3357.1 3619.84 

   
9.4 947.4 929.3 9.16 1831.49 1746.26 9.33 3322.7 3620.63 
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9.5 946.4 929.4 9.26 1799.47 1746.54 9.44 3349.5 3621.43 

   
9.6 915.4 929.5 9.36 1827.44 1746.79 9.54 3376.2 3622.20 

   
9.7 884.2 929.6 9.46 1825.33 1747.05 9.64 3372.5 3622.93 

   
9.8 883.4 929.7 9.56 1823.39 1747.29 9.74 3368.7 3623.67 

   
9.9 912.2 929.8 9.66 1821.32 1747.53 9.84 3364.8 3624.39 

   
10.0 881.3 929.9 9.76 1819.30 1747.77 9.95 3361.0 3625.10 

   
10.1 880.4 930.0 9.87 1787.48 1748.01 10.05 3387.5 3625.81 

   
10.2 909.2 930.1 9.97 1785.52 1748.24 10.15 3383.7 3626.48 

   
10.3 908.2 930.2 10.06 1842.88 1748.45 10.25 3410.2 3627.13 

   
10.4 907.0 930.3 10.16 1840.82 1748.67 10.36 3406.2 3627.80 

   
10.5 876.3 930.4 10.27 1809.17 1748.89 10.46 3402.4 3628.42 

   
10.6 934.6 930.5 10.37 1866.21 1749.10 10.57 3398.3 3629.09 

   
10.7 933.6 930.6 10.47 1864.17 1749.31 10.67 3394.6 3629.67 

   
10.8 932.5 930.7 10.57 1862.03 1749.51 10.77 3420.8 3630.29 

   
10.9 931.3 930.8 10.67 1801.07 1749.71 10.87 3417.0 3630.86 

   
11.0 930.3 930.9 10.77 1828.43 1749.91 10.97 3443.1 3631.44 

   
11.1 958.7 930.9 10.87 1855.76 1750.10 11.08 3469.1 3632.03 

   
11.2 928.2 931.0 10.97 1941.73 1750.29 11.18 3435.0 3632.59 

   
11.3 927.2 931.1 11.07 1851.58 1750.47 11.28 3491.2 3633.12 

   
11.4 926.1 931.2 11.17 1878.73 1750.66 11.38 3457.2 3633.67 

   
11.5 954.2 931.3 11.28 1876.56 1750.84 11.48 3483.2 3634.19 

   
11.6 953.2 931.3 11.37 1816.04 1751.01 11.59 3449.1 3634.74 

   
11.7 952.1 931.4 11.47 1930.73 1751.18 11.69 3475.0 3635.23 

   
11.8 980.3 931.5 11.58 1811.88 1751.35 11.79 3500.8 3635.74 

   
11.9 979.2 931.6 11.68 1926.31 1751.52 11.89 3526.6 3636.23 

   
12.0 977.9 931.6 11.78 1807.77 1751.68 12.00 3522.4 3636.73 

   
12.1 976.8 931.7 11.88 1863.82 1751.85 12.10 3488.6 3637.20 

   
12.2 1004.8 931.8 11.98 1832.71 1752.00 12.20 3543.9 3637.66 

   
12.3 974.6 931.8 12.08 1859.57 1752.16 12.30 3539.8 3638.13 

   
12.4 1002.5 931.9 12.18 1886.44 1752.31 12.41 3506.0 3638.59 

   
12.5 1001.1 932.0 12.28 1884.24 1752.46 12.51 3560.9 3639.05 

   
12.6 1000.0 932.0 12.38 1911.02 1752.61 12.61 3556.9 3639.47 

   
12.7 1027.8 932.1 12.48 1908.78 1752.76 12.72 3552.7 3639.91 

   
12.8 1026.6 932.2 12.58 1906.55 1752.90 12.82 3548.5 3640.34 

   
12.9 1025.5 932.2 12.68 1904.36 1753.04 12.92 3514.9 3640.76 
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13.1 995.3 932.3 12.78 1902.21 1753.18 13.02 3540.2 3641.17 

   
13.2 1022.9 932.4 12.88 1900.02 1753.32 13.13 3535.9 3641.59 

   
13.3 1021.8 932.4 12.99 1897.79 1753.45 13.23 3531.8 3641.98 

   
13.4 991.9 932.5 13.08 1895.64 1753.58 13.33 3527.7 3642.37 

   
13.5 990.7 932.5 13.19 1893.41 1753.72 13.43 3552.8 3642.77 

   
13.6 989.4 932.6 13.29 1891.21 1753.85 13.54 3548.4 3643.16 

   
13.7 988.2 932.6 13.39 1917.58 1753.97 13.64 3515.1 3643.53 

   
13.8 987.1 932.7 13.49 1886.79 1754.10 13.74 3540.1 3643.90 

   
13.9 957.4 932.8 13.59 1884.69 1754.22 13.84 3535.9 3644.27 

   
14.0 984.8 932.8 13.69 1996.24 1754.34 13.95 3531.7 3644.63 

   
14.1 955.0 932.9 13.79 1908.60 1754.47 14.05 3556.6 3644.98 

   
14.2 982.3 932.9 13.89 1934.81 1754.58 14.15 3552.2 3645.35 

   
14.3 981.2 933.0 13.99 1875.88 1754.69 14.26 3577.0 3645.69 

   
14.4 1008.5 933.0 14.09 1902.02 1754.81 14.36 3572.7 3646.03 
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Soil: Dessicated Crust 2F-01-29 

 
 

    

Confining Pressures 

Data for Deviatoric Modulus Parameters 

  70% Stress  Level 95% Stress Level 

σ3 (σ1-σ3)f σ1-σ3 εa εa/(σ1-σ3) σ1-σ3 εa εa/(σ1-σ3) 

246 1134 793.8 0.032 4.03E-05 1077.3 0.047 4.36E-05 

910 2628 1839.6 0.015 8.15E-06 2496.6 0.041 1.64E-05 

1588 3910 2737 0.006 2.19E-06 3714.5 0.025 6.73E-06 

        

        Pa= 2116 psf 

     

        
σ3/Pa 1/(σ1-σ3)ult Rf Ei/Pa 

    0.1 2.21E-04 0.25 14 

   

 

0.4 3.18E-04 0.84 140 

    0.8 2.39E-04 0.93 623 

    

 

Rf Average= 0.67 
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Raw Test Data 
    

 

     Confining 
Pressures 

          Sigma 3 
          psf Pa (psf) Sigma3/Pa 

        246 2116 0.116257089 
        910 2116 0.430056711 
        1588 2116 0.75047259 
        

           

           

           Sigma 3 = 9390 
psf 

Axial 
Strain 

Deviator 
Stress 

 

Sigma 3 =10140 
psf 

Axial 
Strain 

Deviator 
Stress 

 

Sigma 3 = 11640 
psf 

Axial 
Strain 

Deviator 
Stress 

 
0.0 0 

  
0.0 0 

  
0.0 0 

 
0.1 164 

  
0.1 190 

  
0.1 603 

 
0.2 220 

  
0.2 497 

  
0.2 1152 

 
0.3 254 

  
0.3 836 

  
0.3 1710 

 
0.4 237 

  
0.4 1001 

  
0.4 2193 

 
0.5 270 

  
0.5 1165 

  
0.5 2517 

 
0.6 298 

  
0.6 1258 

  
0.6 2746 

 
0.7 326 

  
0.7 1343 

  
0.7 2901 

 
0.8 342 

  
0.8 1413 

  
0.8 3035 

 
0.9 353 

  
0.9 1482 

  
0.9 3168 

 
1.0 375 

  
1.0 1551 

  
1.0 3238 

 
1.3 408 

  
1.3 1695 

  
1.3 3428 

 
1.5 457 

  
1.5 1831 

  
1.5 3534 

 
1.8 500 

  
1.8 1958 

  
1.8 3598 

 
2.0 549 

  
2.0 2077 

  
2.0 3630 

 
2.3 597 

  
2.3 2141 

  
2.3 3673 

 
2.5 646 

  
2.6 2205 

  
2.5 3715 

 
2.8 699 

  
2.8 2276 

  
2.8 3756 

 
3.0 757 

  
3.1 2324 

  
3.0 3777 

 
3.3 810 

  
3.3 2371 

  
3.3 3798 

 
3.5 857 

  
3.6 2426 

  
3.5 3809 

 
3.8 899 

  
3.8 2458 

  
3.8 3850 

 
4.0 956 

  
4.1 2497 

  
4.1 3850 

 
4.5 1054 

  
4.6 2567 

  
4.6 3880 
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5.1 1134 

  
5.1 2628 

  
5.1 3910 

 
5.6 1230 

  
5.6 2681 

  
5.6 3909 

 
6.1 1324 

  
6.1 2711 

  
6.1 3927 

 
6.6 1386 

  
6.6 2733 

  
6.6 3946 

 
7.1 1447 

  
7.1 2777 

  
7.1 3964 

 
7.6 1507 

  
7.7 2791 

  
7.6 3981 

 
8.1 1556 

  
8.2 2827 

  
8.1 3979 

 
8.6 1594 

  
8.7 2840 

  
8.6 3976 

 
9.1 1636 

  
9.2 2867 

  
9.1 3974 

 
9.6 1673 

  
9.7 2872 

  
9.6 3970 

 
10.1 1694 

  
10.2 2877 

  
10.1 3977 

 
10.6 1725 

  
10.7 2875 

  
10.6 3964 

 
11.1 1761 

  
11.2 2873 

  
11.1 3941 

 
11.6 1791 

  
11.7 2870 

  
11.7 3919 

 
12.1 1806 

  
12.2 2861 

  
12.2 3896 

 
13.1 1795 

  
12.8 2851 

  
12.7 3874 

 
13.6 1799 

  
13.3 2827 

  
13.2 3842 

 
14.1 1803 

  
13.8 2818 

  
13.7 3792 

 
14.6 1807 

  
14.3 2801 

  
14.2 3761 

 
15.2 1825 

  
14.8 2784 

  
14.7 3730 

         
15.2 3699 
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Rf  0.67 
 

Ei B σ3 Ei B σ3 Ei B σ3 

c 0.00 
 

8877.20 0.00 246.00 303503.13 0.00 910.00 1364733.19 0.00 1588.00 

Pa 2116 psf                   

K 1400 
 

                  

n 2.7 
 

                  

   
                  

   
                  

   
                  

   
                  

1/(σ1-σ3)ult 
  

                  

2.21E-04 
  

                  

3.18E-04 
  

Axial 
Strain 

Deviator 
Stress 

Hyperbolic 
σ1-σ3 

Axial 
Strain 

Deviator 
Stress 

Hyperbolic 
σ1-σ3 Axial Strain 

Deviator 
Stress 

Hyperbolic 
σ1-σ3 

2.39E-04 
  

0.0 0 0.0 0.0 0 0 0.0 0 0 

   
0.1 164 8.9 0.1 190 276.8 0.1 603 1029.2 

   
0.2 220 17.7 0.2 497 508.8 0.2 1152 1652.3 

   
0.3 254 26.5 0.3 836 706.1 0.3 1710 2070.0 

   
0.4 237 35.2 0.4 1001 875.9 0.4 2193 2369.5 

   
0.5 270 44.0 0.5 1165 1023.6 0.5 2517 2594.7 

   
0.6 298 52.6 0.6 1258 1153.2 0.6 2746 2770.3 

   
0.7 326 61.3 0.7 1343 1267.9 0.7 2901 2911.0 

   
0.8 342 69.9 0.8 1413 1370.1 0.8 3035 3026.2 

   
0.9 353 78.5 0.9 1482 1461.8 0.9 3168 3122.4 

   
1.0 375 87.1 1.0 1551 1544.4 1.0 3238 3203.8 

   
1.3 408 112.5 1.3 1695 1749.9 1.3 3428 3387.3 

   
1.5 457 129.4 1.5 1831 1859.9 1.5 3534 3475.8 

   
1.8 500 154.3 1.8 1958 1995.8 1.8 3598 3577.0 

   
2.0 549 170.8 2.0 2077 2071.4 2.0 3630 3629.9 

   
2.3 597 195.4 2.3 2141 2167.9 2.3 3673 3694.0 

   
2.5 646 211.6 2.6 2205 2248.5 2.5 3715 3729.1 

   
2.8 699 235.6 2.8 2276 2295.2 2.8 3756 3773.3 

   
3.0 757 251.5 3.1 2324 2356.8 3.0 3777 3798.3 

   
3.3 810 275.1 3.3 2371 2393.2 3.3 3798 3830.6 

   
3.5 857 290.7 3.6 2426 2441.8 3.5 3809 3849.3 

   
3.8 899 313.9 3.8 2458 2470.8 3.8 3850 3873.9 
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4.0 956 329.2 4.1 2497 2510.2 4.1 3850 3895.2 

   
4.5 1054 367.1 4.6 2567 2566.5 4.6 3880 3924.9 

   
5.1 1134 411.6 5.1 2628 2613.6 5.1 3910 3949.1 

   
5.6 1230 447.9 5.6 2681 2653.6 5.6 3909 3969.2 

   
6.1 1324 483.6 6.1 2711 2688.0 6.1 3927 3986.2 

   
6.6 1386 518.7 6.6 2733 2717.9 6.6 3946 4000.7 

   
7.1 1447 553.2 7.1 2777 2744.1 7.1 3964 4013.3 

   
7.6 1507 587.1 7.7 2791 2771.6 7.6 3981 4024.2 

   
8.1 1556 620.5 8.2 2827 2791.8 8.1 3979 4033.9 

   
8.6 1594 653.2 8.7 2840 2809.9 8.6 3976 4042.5 

   
9.1 1636 685.4 9.2 2867 2826.2 9.1 3974 4050.1 

   
9.6 1673 717.1 9.7 2872 2841.1 9.6 3970 4057.0 

   
10.1 1694 748.3 10.2 2877 2854.6 10.1 3977 4063.3 

   
10.6 1725 779.0 10.7 2875 2866.9 10.6 3964 4068.9 

   
11.1 1761 809.2 11.2 2873 2878.3 11.1 3941 4074.1 

   
11.6 1791 838.8 11.7 2870 2888.7 11.7 3919 4079.7 

   
12.1 1806 868.1 12.2 2861 2898.4 12.2 3896 4084.0 

   
13.1 1795 925.1 12.8 2851 2909.0 12.7 3874 4087.9 

   
13.6 1799 953.0 13.3 2827 2917.3 13.2 3842 4091.6 

   
14.1 1803 980.5 13.8 2818 2924.9 13.7 3792 4095.0 

   
14.6 1807 1007.5 14.3 2801 2932.1 14.2 3761 4098.1 

   
15.2 1825 1039.4 14.8 2784 2938.8 14.70 3730.00 4101.1 

   
            15.20 3699.00 4103.9 
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Soil: Upper Soft Soil SRE-09-04 

      

Confining Pressures 

Data for Deviatoric Modulus Parameters 

  70% Stress  Level 95% Stress Level 

σ3 (σ1-σ3)f σ1-σ3 εa εa/(σ1-σ3) σ1-σ3 εa εa/(σ1-σ3) 

173 566 396.2 0.0015 3.79E-06 537.7 0.0066 1.23E-05 

389 926 648.2 0.0033 5.09E-06 879.7 0.0133 1.51E-05 

878 1864 1304.8 0.0045 3.45E-06 1770.8 0.0158 8.92E-06 

        

        Pa= 2116 psf 

     

        
σ3/Pa 1/(σ1-σ3)ult Rf Ei/Pa 

   

 

0.1 1.66E-03 0.94 367 

    0.2 1.00E-03 0.93 265 

    0.4 4.84E-04 0.90 372 

    

 

Rf Average= 0.92 
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Raw Test Data 
    

 

     Confining 
Pressures 

          Sigma 3 
          psf Pa (psf) Sigma3/Pa 

        173 2116 0.081758034 
        389 2116 0.183837429 
        878 2116 0.414933837 
        

           

           

           Sigma 3 = 346 
psf 

Axial 
Strain 

Deviator 
Stress 

 

Sigma 3 =389 
psf 

Axial 
Strain 

Deviator 
Stress 

 

Sigma 3 = 878 
psf 

Axial 
Strain 

Deviator 
Stress 

 
0.00 129 

  
0.00 58 

  
0.00 36 

 
0.08 362 

  
0.08 172 

  
0.10 664 

 
0.18 409 

  
0.16 470 

  
0.20 1007 

 
0.26 455 

  
0.25 538 

  
0.30 1208 

 
0.35 478 

  
0.33 629 

  
0.40 1388 

 
0.43 501 

  
0.41 697 

  
0.50 1467 

 
0.51 523 

  
0.49 742 

  
0.59 1526 

 
0.61 523 

  
0.58 787 

  
0.69 1605 

 
0.69 546 

  
0.66 809 

  
0.79 1624 

 
0.77 568 

  
0.74 808 

  
0.89 1682 

 
0.86 545 

  
0.82 830 

  
0.99 1701 

 
0.94 567 

  
0.91 852 

  
1.09 1699 

 
1.04 567 

  
0.99 852 

  
1.19 1717 

 
1.12 589 

  
1.07 851 

  
1.29 1756 

 
1.20 589 

  
1.15 873 

  
1.39 1754 

 
1.28 588 

  
1.24 872 

  
1.49 1752 

 
1.37 588 

  
1.32 894 

  
1.58 1770 

 
1.45 587 

  
1.40 893 

  
1.68 1748 

 
1.55 587 

  
1.48 893 

  
1.78 1767 

 
1.63 586 

  
1.57 892 

  
1.88 1745 

 
1.71 586 

  
1.65 891 

  
1.98 1763 

 
1.79 608 

  
1.73 890 

  
2.08 1781 

 
1.88 585 

  
1.81 912 

  
2.18 1799 

 
1.97 607 

  
1.90 889 

  
2.28 1797 
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2.06 607 

  
1.98 888 

  
2.38 1776 

 
2.14 583 

  
2.06 887 

  
2.48 1734 

 
2.22 583 

  
2.14 887 

  
2.57 1772 

 
2.30 582 

  
2.23 886 

  
2.67 1770 

 
2.40 559 

  
2.31 885 

  
2.77 1828 

 
2.48 559 

  
2.39 884 

  
2.87 1806 

 
2.57 535 

  
2.47 884 

  
2.97 1804 

 
2.65 535 

  
2.55 883 

  
3.07 1802 

 
2.73 534 

  
2.64 904 

  
3.17 1781 

 
2.83 534 

  
2.72 904 

  
3.27 1779 

 
2.91 511 

  
2.80 903 

  
3.37 1797 

 
2.99 510 

  
2.88 880 

  
3.47 1815 

 
3.08 533 

  
2.97 946 

  
3.56 1813 

 
3.16 532 

  
3.05 901 

  
3.66 1811 

 
3.26 532 

  
3.13 878 

  
3.76 1809 

 
3.34 554 

  
3.21 899 

  
3.86 1827 

 
3.42 531 

  
3.30 920 

  
3.96 1805 

 
3.50 553 

  
3.38 898 

  
4.06 1823 

 
3.59 552 

  
3.46 941 

  
4.16 1821 

 
3.68 574 

  
3.54 896 

  
4.26 1819 

 
3.77 574 

  
3.64 895 

  
4.36 1837 

 
3.85 573 

  
3.71 917 

  
4.46 1815 

 
3.93 573 

  
3.79 894 

  
4.55 1833 

 
4.01 572 

  
3.87 937 

  
4.65 1831 

 
4.11 572 

  
3.97 892 

  
4.75 1868 

 
4.19 571 

  
4.05 891 

  
4.85 1846 

 
4.28 571 

  
4.14 890 

  
4.95 1864 

 
4.36 592 

  
4.20 934 

  
5.05 1881 

 
4.44 614 

  
4.30 911 

  
5.15 1841 

 
4.54 614 

  
4.37 910 

  
5.25 1877 

 
4.62 591 

  
4.45 888 

  
5.35 1837 

 
4.70 613 

  
4.55 909 

  
5.45 1873 

 
4.79 590 

  
4.63 908 

  
5.54 1852 

 
4.87 567 

  
4.71 907 

  
5.64 1869 

 
4.97 566 

  
4.78 885 

  
5.74 1867 

 
5.05 544 

  
4.88 905 

  
5.84 1846 

7
2
 



www.manaraa.com

73 
 

 
5.13 565 

  
4.96 926 

  
5.94 1863 

 
5.21 565 

  
5.03 904 

  
6.04 1842 

 
5.30 565 

  
5.13 925 

  
6.14 1821 

 
5.39 564 

  
5.21 902 

  
6.24 1838 

 
5.48 563 

  
5.29 923 

  
6.34 1855 

 
5.56 563 

  
5.37 901 

  
6.44 1853 

 
5.64 562 

  
5.46 922 

  
6.53 1852 

 
5.72 562 

  
5.54 942 

  
6.63 1812 

 
5.81 539 

  
5.62 898 

  
6.73 1848 

 
5.90 539 

  
5.70 941 

  
6.83 1846 

 
5.99 538 

  
5.79 918 

  
6.93 1844 

 
6.07 538 

  
5.87 874 

  
7.03 1861 

 
6.15 516 

  
5.95 938 

  
7.13 1859 

 
6.23 515 

  
6.03 894 

  
7.23 1857 

 
6.33 515 

  
6.12 915 

  
7.33 1855 

 
6.41 536 

  
6.20 893 

  
7.43 1871 

 
6.50 536 

  
6.28 914 

  
7.52 1888 

 
6.58 535 

  
6.36 913 

  
7.62 1905 

 
6.66 535 

  
6.44 955 

  
7.72 1884 

 
6.76 534 

  
6.53 954 

  
7.82 1863 

 
6.84 555 

  
6.61 953 

  
7.92 1880 

 
6.94 533 

  
6.69 952 

  
8.02 1878 

 
7.01 554 

  
6.77 951 

  
8.12 1895 

 
7.09 576 

  
6.86 929 

  
8.22 1893 

 
7.19 553 

  
6.94 950 

  
8.32 1891 

 
7.27 509 

  
7.02 949 

  
8.42 1888 

 
7.35 509 

  
7.10 948 

  
8.51 1886 

 
7.43 530 

  
7.19 947 

  
8.61 1884 

 
7.52 551 

  
7.27 946 

  
8.71 1882 

 
7.62 551 

  
7.35 924 

  
8.81 1899 

 
7.70 550 

  
7.43 945 

  
8.91 1915 

 
7.78 571 

  
7.52 944 

  
9.01 1876 

 
7.86 571 

  
7.60 943 

  
9.11 1874 

 
7.94 570 

  
7.68 942 

  
9.23 1890 

 
8.04 548 

  
7.76 941 

  
9.31 1870 

 
8.13 569 

  
7.85 941 

  
9.41 1886 
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8.21 547 

  
7.93 940 

  
9.52 1902 

 
8.29 547 

  
8.01 939 

  
9.62 1918 

 
8.37 525 

  
8.09 938 

  
9.70 1880 

 
8.47 546 

  
8.18 958 

  
9.80 1878 

 
8.55 545 

  
8.26 936 

  
9.92 1912 

 
8.63 545 

  
8.34 935 

  
10.02 1892 

 
8.72 544 

  
8.42 935 

  
10.12 1926 

 
8.80 544 

  
8.51 934 

  
10.22 1924 

 
8.90 522 

  
8.59 933 

  
10.32 1904 

 
8.98 521 

  
8.67 932 

  
10.42 1902 

 
9.06 521 

  
8.75 931 

  
10.51 1881 

 
9.14 520 

  
8.83 930 

  
10.61 1934 

 
9.23 520 

  
8.92 909 

  
10.71 1895 

 
9.33 519 

  
9.00 950 

  
10.81 1929 

 
9.41 519 

  
9.08 949 

  
10.91 1927 

 
9.49 518 

  
9.16 927 

  
11.01 1889 

 
9.57 518 

  
9.25 947 

  
11.11 1905 

 
9.65 517 

  
9.33 925 

  
11.21 1903 

 
9.75 517 

  
9.41 925 

  
11.31 1883 

 
9.84 537 

  
9.49 944 

  
11.41 1899 

 
9.92 537 

  
9.58 944 

  
11.50 1914 

 
10.00 536 

  
9.66 963 

  
11.60 1912 

 
10.08 557 

  
9.74 963 

  
11.70 1928 

 
10.16 556 

  
9.82 941 

  
11.80 1908 

 
10.26 556 

  
9.91 940 

  
11.90 1906 

 
10.35 555 

  
9.99 960 

  
12.00 1922 

 
10.43 555 

  
10.07 959 

  
12.10 1919 

 
10.51 575 

  
10.15 958 

  
12.20 1899 

 
10.59 554 

  
10.24 978 

  
12.30 1915 

 
10.69 574 

  
10.32 977 

  
12.40 1913 

 
10.77 574 

  
10.40 935 

  
12.50 1928 

 
10.86 573 

  
10.48 955 

  
12.59 1891 

 
10.94 572 

  
10.57 974 

  
12.69 1924 

 
11.02 572 

  
10.65 953 

  
12.79 1940 

 
11.12 571 

  
10.73 932 

  
12.89 1920 

 
11.20 591 

  
10.81 972 

  
12.99 1935 
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11.28 570 

  
10.90 950 

  
13.09 1951 

 
11.37 590 

  
10.98 929 

  
13.19 1931 

 
11.45 590 

  
11.06 928 

  
13.29 1946 

 
11.55 589 

  
11.14 948 

  
13.39 1961 

 
11.63 589 

  
11.22 947 

  
13.49 1942 

 
11.71 588 

  
11.31 946 

  
13.58 1922 

 
11.79 608 

  
11.39 945 

  
13.68 1920 

 
11.87 608 

  
11.47 924 

  
13.78 1935 

 
11.97 607 

  
11.55 964 

  
13.88 1915 

 
12.06 585.79 

  
11.64 942 

  
13.98 1913 

 
12.14 605.74 

  
11.72 962 

  
14.08 1946 

 
12.22 605.18 

  
11.80 981 

  
14.18 1943 

 
12.30 604.61 

  
11.88 980 

  
14.28 1941 

 
12.40 583.49 

  
11.98 959 

  
14.38 1939 

 
12.48 582.94 

  
12.07 958 

  
14.48 1937 

 
12.57 582.39 

  
12.13 937 

  
14.57 1935 

 
12.65 581.84 

  
12.21 956 

  
14.67 1932 

 
12.73 581.30 

  
12.30 935 

  
14.77 1930 

 
12.83 600.98 

  
12.39 934 

  
14.87 1928 

 
12.91 600.42 

  
12.46 954 

  
14.97 1943 

 
12.99 599.85 

  
12.54 953 

  
15.07 1941 

 
13.08 619.57 

  
12.64 972 

  
15.17 1938 

 
13.16 618.98 

  
12.72 971 

  
15.27 1953 

 
13.26 638.52 

  
12.81 970 

  
15.37 1968 

 
13.34 637.91 

  
12.89 969 

  
15.47 1949 

 
13.42 637.31 

  
12.97 968 

  
15.56 1946 

 
13.50 656.89 

  
13.05 987 

  
15.66 1927 

 
13.59 656.26 

  
13.14 966 

  
15.76 1976 

 
13.68 655.51 

  
13.22 965 

  
15.86 1974 

 
13.77 675.01 

  
13.30 984 

  
15.96 1954 

 
13.85 654.27 

  
13.38 963 

  
16.06 1969 

 
13.93 653.64 

  
13.47 963 

  
16.16 1950 

 
14.01 653.02 

  
13.55 981 

  
16.26 1964 

 
14.11 672.31 

  
13.63 980 

  
16.36 1962 

 
14.19 651.64 

  
13.71 980 

  
16.46 1943 

 
14.28 671.02 

  
13.80 959 

  
16.55 1940 
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14.36 690.36 

  
13.88 978 

  
16.65 1938 

 
14.44 689.70 

  
13.96 1016 

  
16.75 1953 

 
14.52 689.04 

  
14.04 996 

  
16.85 1950 

 
14.62 668.32 

  
14.13 975 

  
16.95 1931 

 
14.70 667.67 

  
14.21 974 

  
17.05 1929 

 
14.79 667.03 

  
14.29 1012 

  
17.15 1927 

 
14.87 646.52 

  
14.37 972 

  
17.25 1924 

 
14.95 665.74 

  
14.46 991 

  
17.35 1888 

 
15.05 664.97 

  
14.54 990 

  
17.45 1903 

 
15.13 664.33 

  
14.62 950 

  
17.54 1934 

 
15.21 643.90 

  
14.70 968 

  
17.64 1915 

 
15.30 663.04 

  
14.78 967 

  
17.74 1929 

 
15.38 662.40 

  
14.87 986 

  
17.84 1927 

 
15.48 681.35 

  
14.95 985 

  
17.94 1925 

 
15.56 680.69 

  
15.03 965 

  
18.04 1956 

 
15.64 680.02 

  
15.11 983 

  
18.14 1920 

 
15.72 679.36 

  
15.20 963 

  
18.24 1934 

 
15.81 678.70 

  
15.28 962 

  
18.36 1932 

 
15.90 677.90 

  
15.36 961 

  
18.46 1946 

 
15.99 677.24 

  
15.44 979 

  
18.55 1910 

 
16.07 676.58 

  
15.53 978 

  
18.63 1941 

 
16.15 695.48 

  
15.61 997 

  
18.73 1956 

 
16.23 694.80 

  
15.69 996 

  
18.85 1969 

 
16.33 674.45 

  
15.77 975 

  
18.93 1934 

 
16.41 673.79 

  
15.86 994 

  
19.05 1948 

     
15.94 993 

  
19.13 1930 

     
16.02 973 

  
19.25 1960 

     
16.10 991 

  
19.35 1957 

     
16.19 1009 

  
19.43 1955 

     
16.27 1008 

  
19.54 1952 

     
16.35 1007 

  
19.64 1934 

     
16.43 987 

  
19.74 1964 

     
16.48 967 
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Rf  0.92 
 

Ei B σ3 Ei B σ3 Ei B σ3 

c 0.00 
 

514298.93 0.00 173.00 740580.37 0.00 389.00 1068236.49 0.00 878.00 

Pa 2116 psf                   

K 750 
 

                  

n 0.45 
 

                  

   
                  

   
                  

   
                  

   
                  

1/(σ1-σ3)ult 
  

                  

1.66E-03 
  

                  

1.00E-03 
  

Axial 
Strain 

Deviator 
Stress 

Hyperbolic 
σ1-σ3 

Axial 
Strain 

Deviator 
Stress 

Hyperbolic 
σ1-σ3 Axial Strain 

Deviator 
Stress 

Hyperbolic 
σ1-σ3 

4.84E-04 
  

0.00 129.36 0.0 0.00 57.82 0 0.00 36.32 0 

   
0.08 362.42 248.2 0.08 172.30 378.6 0.10 663.62 699.4 

   
0.18 408.65 365.1 0.16 469.67 548.8 0.20 1006.65 1044.8 

   
0.26 454.87 416.1 0.25 537.89 645.6 0.30 1207.62 1250.7 

   
0.35 477.75 449.0 0.33 628.84 708.0 0.40 1388.01 1387.4 

   
0.43 500.59 471.9 0.41 696.80 751.6 0.50 1467.25 1484.8 

   
0.51 523.39 488.8 0.49 741.85 783.8 0.59 1526.20 1557.7 

   
0.61 522.87 504.1 0.58 786.82 808.5 0.69 1605.15 1614.3 

   
0.69 545.62 513.9 0.66 808.94 828.1 0.79 1623.64 1659.5 

   
0.77 568.32 521.9 0.74 808.27 844.0 0.89 1682.25 1696.5 

   
0.86 544.71 528.6 0.82 830.33 857.2 0.99 1700.63 1727.3 

   
0.94 567.38 534.2 0.91 852.36 868.3 1.09 1698.93 1753.3 

   
1.04 566.81 539.9 0.99 851.65 877.7 1.19 1717.24 1775.6 

   
1.12 589.42 544.0 1.07 850.94 885.9 1.29 1755.51 1794.9 

   
1.20 588.93 547.5 1.15 872.89 893.0 1.39 1753.75 1811.8 

   
1.28 588.44 550.7 1.24 872.16 899.3 1.49 1751.99 1826.7 

   
1.37 587.95 553.4 1.32 894.05 904.8 1.58 1770.17 1840.0 

   
1.45 587.46 555.9 1.40 893.31 909.8 1.68 1748.47 1851.8 

   
1.55 586.87 558.6 1.48 892.56 914.2 1.78 1766.61 1862.5 

   
1.63 586.38 560.6 1.57 891.81 918.3 1.88 1744.95 1872.1 

   
1.71 585.89 562.4 1.65 891.07 921.9 1.98 1763.04 1880.9 

   
1.79 608.31 564.1 1.73 890.32 925.2 2.08 1781.10 1888.8 
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1.88 584.91 565.6 1.81 912.08 928.3 2.18 1799.11 1896.2 

   
1.97 607.19 567.2 1.90 888.83 931.1 2.28 1797.29 1902.9 

   
2.06 606.68 568.5 1.98 888.08 933.7 2.38 1775.70 1909.1 

   
2.14 583.34 569.7 2.06 887.33 936.1 2.48 1734.39 1914.9 

   
2.22 582.85 570.8 2.14 886.59 938.3 2.57 1772.09 1920.3 

   
2.30 582.36 571.8 2.23 885.84 940.3 2.67 1770.29 1925.2 

   
2.40 558.99 572.9 2.31 885.09 942.2 2.77 1827.58 1929.9 

   
2.48 558.52 573.8 2.39 884.35 944.0 2.87 1806.04 1934.2 

   
2.57 535.31 574.6 2.47 883.60 945.7 2.97 1804.20 1938.3 

   
2.65 534.86 575.4 2.55 882.86 947.3 3.07 1802.36 1942.1 

   
2.73 534.41 576.2 2.64 904.43 948.8 3.17 1780.90 1945.7 

   
2.83 533.87 577.0 2.72 903.66 950.2 3.27 1779.08 1949.1 

   
2.91 510.76 577.6 2.80 902.90 951.5 3.37 1796.84 1952.3 

   
2.99 510.33 578.2 2.88 879.87 952.8 3.47 1814.55 1955.4 

   
3.08 532.51 578.8 2.97 945.85 953.9 3.56 1812.69 1958.2 

   
3.16 532.06 579.4 3.05 900.60 955.1 3.66 1810.83 1961.0 

   
3.26 531.52 580.0 3.13 877.63 956.1 3.76 1808.97 1963.6 

   
3.34 553.62 580.5 3.21 899.07 957.1 3.86 1826.58 1966.0 

   
3.42 530.62 581.0 3.30 920.47 958.1 3.96 1805.25 1968.4 

   
3.50 552.68 581.4 3.38 897.54 959.0 4.06 1822.82 1970.6 

   
3.59 552.21 581.9 3.46 941.03 959.9 4.16 1820.94 1972.7 

   
3.68 574.12 582.3 3.54 896.01 960.7 4.26 1819.06 1974.8 

   
3.77 573.63 582.7 3.64 895.09 961.7 4.36 1836.55 1976.7 

   
3.85 573.14 583.1 3.71 916.55 962.3 4.46 1815.29 1978.6 

   
3.93 572.65 583.5 3.79 893.71 963.0 4.55 1832.75 1980.4 

   
4.01 572.16 583.8 3.87 937.02 963.7 4.65 1830.85 1982.1 

   
4.11 571.57 584.2 3.97 892.03 964.5 4.75 1867.53 1983.7 

   
4.19 571.08 584.5 4.05 891.26 965.2 4.85 1846.32 1985.3 

   
4.28 570.59 584.8 4.14 890.49 965.8 4.95 1863.65 1986.8 

   
4.36 592.42 585.1 4.20 933.80 966.3 5.05 1880.94 1988.3 

   
4.44 614.21 585.4 4.30 910.90 967.0 5.15 1840.55 1989.7 

   
4.54 613.58 585.7 4.37 910.27 967.4 5.25 1877.02 1991.1 

   
4.62 590.79 586.0 4.45 887.59 967.9 5.35 1836.71 1992.4 

   
4.70 612.52 586.3 4.55 908.55 968.6 5.45 1873.10 1993.66 

   
4.79 589.77 586.5 4.63 907.76 969.1 5.54 1852.00 1994.88 
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4.87 567.06 586.7 4.71 906.98 969.5 5.64 1869.18 1996.06 

   
4.97 566.48 587.0 4.78 884.52 969.9 5.74 1867.21 1997.20 

   
5.05 543.83 587.2 4.88 905.41 970.4 5.84 1846.18 1998.30 

   
5.13 565.49 587.4 4.96 926.41 970.9 5.94 1863.29 1999.37 

   
5.21 565.00 587.6 5.03 904.00 971.2 6.04 1842.30 2000.40 

   
5.30 564.51 587.8 5.13 924.81 971.7 6.14 1821.34 2001.40 

   
5.39 563.93 588.1 5.21 902.27 972.1 6.24 1838.41 2002.37 

   
5.48 563.44 588.3 5.29 923.20 972.5 6.34 1855.45 2003.31 

   
5.56 562.95 588.4 5.37 900.70 972.9 6.44 1853.48 2004.23 

   
5.64 562.46 588.6 5.46 921.59 973.2 6.53 1851.52 2005.11 

   
5.72 561.97 588.8 5.54 942.44 973.6 6.63 1811.74 2005.97 

   
5.81 539.49 589.0 5.62 898.35 973.9 6.73 1847.60 2006.81 

   
5.90 538.93 589.2 5.70 940.80 974.2 6.83 1845.64 2007.62 

   
5.99 538.46 589.3 5.79 918.38 974.5 6.93 1843.68 2008.41 

   
6.07 537.99 589.5 5.87 874.42 974.9 7.03 1860.55 2009.18 

   
6.15 515.61 589.6 5.95 938.33 975.2 7.13 1858.57 2009.92 

   
6.23 515.16 589.8 6.03 894.43 975.5 7.23 1856.59 2010.65 

   
6.33 514.62 589.9 6.12 915.17 975.7 7.33 1854.61 2011.36 

   
6.41 536.01 590.1 6.20 892.86 976.0 7.43 1871.38 2012.05 

 

  
6.50 535.54 590.2 6.28 913.56 976.3 7.52 1888.11 2012.72 

   
6.58 535.07 590.3 6.36 912.76 976.6 7.62 1904.80 2013.37 

   
6.66 534.60 590.5 6.44 954.84 976.8 7.72 1884.06 2014.01 

   
6.76 534.03 590.6 6.53 954.00 977.1 7.82 1863.37 2014.63 

   
6.84 555.30 590.7 6.61 953.16 977.3 7.92 1880.02 2015.24 

   
6.94 532.99 590.9 6.69 952.32 977.6 8.02 1878.00 2015.84 

   
7.01 554.32 591.0 6.77 951.48 977.8 8.12 1894.59 2016.41 

   
7.09 575.51 591.1 6.86 929.29 978.0 8.22 1892.55 2016.98 

   
7.19 553.24 591.2 6.94 949.80 978.2 8.32 1890.51 2017.53 

   
7.27 509.47 591.3 7.02 948.96 978.5 8.42 1888.47 2018.07 

   
7.35 509.02 591.4 7.10 948.12 978.7 8.51 1886.42 2018.60 

   
7.43 530.17 591.5 7.19 947.27 978.9 8.61 1884.38 2019.11 

   
7.52 551.28 591.6 7.27 946.43 979.1 8.71 1882.34 2019.62 

   
7.62 550.69 591.7 7.35 924.35 979.3 8.81 1898.77 2020.11 

   
7.70 550.20 591.8 7.43 944.75 979.5 8.91 1915.16 2020.59 

   
7.78 571.23 591.9 7.52 943.91 979.7 9.01 1876.22 2021.06 
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7.86 570.72 592.0 7.60 943.07 979.9 9.11 1874.17 2021.52 

   
7.94 570.21 592.1 7.68 942.23 980.0 9.23 1890.11 2022.06 

   
8.04 548.14 592.2 7.76 941.39 980.2 9.31 1870.09 2022.42 

   
8.13 569.09 592.3 7.85 940.55 980.4 9.41 1886.40 2022.85 

   
8.21 547.16 592.4 7.93 939.70 980.6 9.52 1902.25 2023.36 

   
8.29 546.67 592.5 8.01 938.86 980.7 9.62 1918.48 2023.77 

   
8.37 524.80 592.5 8.09 938.02 980.9 9.70 1880.22 2024.10 

   
8.47 545.59 592.6 8.18 958.23 981.1 9.80 1878.15 2024.50 

   
8.55 545.10 592.7 8.26 936.34 981.2 9.92 1912.17 2024.97 

   
8.63 544.61 592.8 8.34 935.50 981.4 10.02 1891.85 2025.35 

   
8.72 544.12 592.9 8.42 934.66 981.5 10.12 1926.18 2025.72 

   
8.80 543.63 592.9 8.51 933.82 981.7 10.22 1924.06 2026.09 

   
8.90 521.78 593.0 8.59 932.98 981.8 10.32 1903.77 2026.45 

   
8.98 521.31 593.1 8.67 932.13 982.0 10.42 1901.67 2026.81 

   
9.06 520.84 593.2 8.75 931.29 982.1 10.51 1881.44 2027.15 

   
9.14 520.37 593.2 8.83 930.45 982.3 10.61 1933.68 2027.49 

   
9.23 519.90 593.3 8.92 908.73 982.4 10.71 1895.36 2027.83 

   
9.33 519.33 593.4 9.00 949.63 982.5 10.81 1929.39 2028.16 

   
9.41 518.86 593.4 9.08 948.77 982.7 10.91 1927.25 2028.48 

   
9.49 518.39 593.5 9.16 927.09 982.8 11.01 1889.06 2028.80 

   
9.57 517.92 593.6 9.25 947.05 982.9 11.11 1904.96 2029.11 

   
9.65 517.45 593.6 9.33 925.41 983.0 11.21 1902.84 2029.42 

   
9.75 516.89 593.7 9.41 924.56 983.2 11.31 1882.75 2029.72 

   
9.84 537.46 593.8 9.49 944.47 983.3 11.41 1898.60 2030.02 

   
9.92 536.97 593.8 9.58 943.61 983.4 11.50 1914.40 2030.31 

   
10.00 536.48 593.9 9.66 963.46 983.5 11.60 1912.26 2030.59 

   
10.08 556.97 593.9 9.74 962.58 983.6 11.70 1928.00 2030.87 

   
10.16 556.46 594.0 9.82 941.03 983.7 11.80 1907.97 2031.15 

   
10.26 555.85 594.0 9.91 940.17 983.9 11.90 1905.83 2031.42 

   
10.35 555.34 594.1 9.99 959.94 984.0 12.00 1921.52 2031.69 

   
10.43 554.83 594.2 10.07 959.07 984.1 12.10 1919.35 2031.96 

   
10.51 575.20 594.2 10.15 958.19 984.2 12.20 1899.41 2032.21 

   
10.59 553.81 594.3 10.24 977.89 984.3 12.30 1915.03 2032.47 

   
10.69 574.04 594.3 10.32 976.99 984.4 12.40 1912.87 2032.72 

   
10.77 573.51 594.4 10.40 935.01 984.5 12.50 1928.43 2032.97 
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10.86 572.98 594.4 10.48 954.67 984.6 12.59 1890.84 2033.21 

   
10.94 572.45 594.5 10.57 974.29 984.7 12.69 1924.07 2033.45 

   
11.02 571.93 594.5 10.65 952.91 984.8 12.79 1939.55 2033.69 

   
11.12 571.29 594.6 10.73 931.57 984.9 12.89 1919.70 2033.92 

   
11.20 591.49 594.6 10.81 971.60 985.0 12.99 1935.15 2034.15 

   
11.28 570.23 594.7 10.90 950.28 985.1 13.09 1950.55 2034.37 

   
11.37 590.39 594.7 10.98 928.99 985.1 13.19 1930.74 2034.60 

   
11.45 589.84 594.7 11.06 928.13 985.2 13.29 1946.11 2034.82 

   
11.55 589.18 594.8 11.14 947.64 985.3 13.39 1961.43 2035.03 

   
11.63 588.64 594.8 11.22 946.76 985.4 13.49 1941.66 2035.24 

   
11.71 588.09 594.9 11.31 945.88 985.5 13.58 1921.94 2035.45 

   
11.79 608.13 594.9 11.39 945.00 985.6 13.68 1919.73 2035.66 

   
11.87 607.56 595.0 11.47 923.83 985.7 13.78 1935.00 2035.86 

   
11.97 606.88 595.0 11.55 963.52 985.7 13.88 1915.33 2036.06 

   
12.06 585.79 595.0 11.64 942.37 985.8 13.98 1913.13 2036.26 

   
12.14 605.74 595.1 11.72 961.72 985.9 14.08 1945.73 2036.46 

   
12.22 605.18 595.1 11.80 981.05 986.0 14.18 1943.49 2036.65 

   
12.30 604.61 595.2 11.88 980.13 986.1 14.28 1941.25 2036.84 

   
12.40 583.49 595.2 11.98 958.85 986.1 14.38 1939.01 2037.03 

   
12.48 582.94 595.2 12.07 957.95 986.2 14.48 1936.77 2037.21 

   
12.57 582.39 595.3 12.13 937.09 986.3 14.57 1934.52 2037.40 

   
12.65 581.84 595.3 12.21 956.34 986.4 14.67 1932.28 2037.58 

   
12.73 581.30 595.3 12.30 935.34 986.4 14.77 1930.04 2037.75 

   
12.83 600.98 595.4 12.39 934.28 986.5 14.87 1927.80 2037.93 

   
12.91 600.42 595.4 12.46 953.64 986.6 14.97 1942.78 2038.10 

   
12.99 599.85 595.5 12.54 952.75 986.6 15.07 1940.52 2038.27 

   
13.08 619.57 595.5 12.64 971.70 986.7 15.17 1938.26 2038.44 

   
13.16 618.98 595.5 12.72 970.78 986.8 15.27 1953.16 2038.61 

   
13.26 638.52 595.6 12.81 969.86 986.9 15.37 1968.02 2038.77 

   
13.34 637.91 595.6 12.89 968.95 986.9 15.47 1948.59 2038.93 

   
13.42 637.31 595.6 12.97 968.03 987.0 15.56 1946.31 2039.09 

   
13.50 656.89 595.7 13.05 987.04 987.0 15.66 1926.94 2039.25 

   
13.59 656.26 595.7 13.14 966.20 987.1 15.76 1975.87 2039.41 

   
13.68 655.51 595.7 13.22 965.28 987.2 15.86 1973.55 2039.56 

   
13.77 675.01 595.8 13.30 984.24 987.2 15.96 1954.21 2039.71 
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13.85 654.27 595.8 13.38 963.45 987.3 16.06 1968.91 2039.86 

   
13.93 653.64 595.8 13.47 962.53 987.4 16.16 1949.60 2040.01 

   
14.01 653.02 595.8 13.55 981.43 987.4 16.26 1964.26 2040.16 

   
14.11 672.31 595.9 13.63 980.49 987.5 16.36 1961.94 2040.30 

   
14.19 651.64 595.9 13.71 979.56 987.5 16.46 1942.69 2040.45 

   
14.28 671.02 595.9 13.80 958.86 987.6 16.55 1940.39 2040.59 

   
14.36 690.36 596.0 13.88 977.69 987.6 16.65 1938.09 2040.73 

   
14.44 689.70 596.0 13.96 1016.20 987.7 16.75 1952.65 2040.87 

   
14.52 689.04 596.0 14.04 995.52 987.8 16.85 1950.33 2041.00 

   
14.62 668.32 596.0 14.13 974.88 987.8 16.95 1931.18 2041.14 

   
14.70 667.67 596.1 14.21 973.94 987.9 17.05 1928.88 2041.27 

   
14.79 667.03 596.1 14.29 1012.31 987.9 17.15 1926.58 2041.41 

   
14.87 646.52 596.1 14.37 972.07 988.0 17.25 1924.28 2041.54 

   
14.95 665.74 596.2 14.46 990.75 988.0 17.35 1888.49 2041.67 

   
15.05 664.97 596.2 14.54 989.79 988.1 17.45 1902.95 2041.79 

   
15.13 664.33 596.2 14.62 949.69 988.1 17.54 1934.07 2041.92 

   
15.21 643.90 596.2 14.70 968.33 988.2 17.64 1915.07 2042.04 

   
15.30 663.04 596.3 14.78 967.40 988.2 17.74 1929.43 2042.17 

   
15.38 662.40 596.3 14.87 985.98 988.3 17.84 1927.10 2042.29 

   
15.48 681.35 596.3 14.95 985.02 988.3 17.94 1924.78 2042.41 

   
15.56 680.69 596.3 15.03 964.59 988.4 18.04 1955.66 2042.53 

   
15.64 680.02 596.4 15.11 983.11 988.4 18.14 1920.14 2042.65 

   
15.72 679.36 596.4 15.20 962.72 988.5 18.24 1934.38 2042.76 

   
15.81 678.70 596.4 15.28 961.78 988.5 18.36 1931.57 2042.90 

   
15.90 677.90 596.4 15.36 960.85 988.6 18.46 1945.74 2043.02 

   
15.99 677.24 596.5 15.44 979.29 988.6 18.55 1910.38 2043.13 

   
16.07 676.58 596.5 15.53 978.34 988.7 18.63 1941.49 2043.22 

   
16.15 695.48 596.5 15.61 996.73 988.7 18.73 1955.59 2043.33 

   
16.23 694.80 596.5 15.69 995.76 988.7 18.85 1969.17 2043.46 

   
16.33 674.45 596.5 15.77 975.48 988.8 18.93 1934.40 2043.55 

   
16.41 673.79 596.6 15.86 993.81 988.8 19.05 1947.97 2043.68 

      
15.94 992.84 988.9 19.13 1929.68 2043.76 

      
16.02 972.61 988.9 19.25 1959.56 2043.89 

      
16.10 990.89 989.0 19.35 1957.16 2043.99 

      
16.19 1009.13 989.0 19.43 1955.23 2044.08 
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16.27 1008.14 989.0 19.54 1952.35 2044.20 

      
16.35 1007.15 989.1 19.64 1933.67 2044.30 

      
16.43 987.00 989.1 19.74 1963.80 2044.40 

      
16.48 967.27 989.1 
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